FAPL-DM-BC: A Secure and Scalable FL Framework with Adaptive Privacy and Dynamic Masking, Blockchain, and XAI for the IoVs
- URL: http://arxiv.org/abs/2501.01063v1
- Date: Thu, 02 Jan 2025 05:21:52 GMT
- Title: FAPL-DM-BC: A Secure and Scalable FL Framework with Adaptive Privacy and Dynamic Masking, Blockchain, and XAI for the IoVs
- Authors: Sathwik Narkedimilli, Amballa Venkata Sriram, Sujith Makam, MSVPJ Sathvik, Sai Prashanth Mallellu,
- Abstract summary: The FAPL-DM-BC solution is a new FL-based privacy, security, and scalability solution for the Internet of Vehicles (IoV)
It leverages Adaptive Privacy-Aware Learning (FAPL) and Dynamic Masking (DM) to learn and adaptively change privacy policies.
The FAPL-DM-BC assures federated learning that is secure, scalable, and interpretable.
- Score: 0.0
- License:
- Abstract: The FAPL-DM-BC solution is a new FL-based privacy, security, and scalability solution for the Internet of Vehicles (IoV). It leverages Federated Adaptive Privacy-Aware Learning (FAPL) and Dynamic Masking (DM) to learn and adaptively change privacy policies in response to changing data sensitivity and state in real-time, for the optimal privacy-utility tradeoff. Secure Logging and Verification, Blockchain-based provenance and decentralized validation, and Cloud Microservices Secure Aggregation using FedAvg (Federated Averaging) and Secure Multi-Party Computation (SMPC). Two-model feedback, driven by Model-Agnostic Explainable AI (XAI), certifies local predictions and explanations to drive it to the next level of efficiency. Combining local feedback with world knowledge through a weighted mean computation, FAPL-DM-BC assures federated learning that is secure, scalable, and interpretable. Self-driving cars, traffic management, and forecasting, vehicular network cybersecurity in real-time, and smart cities are a few possible applications of this integrated, privacy-safe, and high-performance IoV platform.
Related papers
- FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
This study proposes an advanced Learning (FL) framework designed to enhance data privacy and security in IoT environments.
We integrate Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC) and technology.
Unlike traditional FL, our framework enables secure, decentralized authentication and encryption directly on IoT devices.
arXiv Detail & Related papers (2024-10-26T19:30:53Z) - FL-DECO-BC: A Privacy-Preserving, Provably Secure, and Provenance-Preserving Federated Learning Framework with Decentralized Oracles on Blockchain for VANETs [0.0]
Vehicular Ad-Hoc Networks (VANETs) hold immense potential for improving traffic safety and efficiency.
Traditional centralized approaches for machine learning in VANETs raise concerns about data privacy and security.
This paper proposes FL-DECO-BC as a novel privacy-preserving, provably secure, and provenance-preserving federated learning framework specifically designed for VANETs.
arXiv Detail & Related papers (2024-07-30T19:09:10Z) - FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles [5.803236995616553]
Federated learning is a promising solution to train sophisticated machine learning models in vehicular networks.
We introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments.
Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles.
arXiv Detail & Related papers (2024-06-05T20:06:59Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications.
Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs.
We propose a decentralized data-sharing incentive mechanism based on multi-intelligent reinforcement learning to learn the supply-demand balance in markets.
arXiv Detail & Related papers (2024-03-29T14:58:28Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - B^2SFL: A Bi-level Blockchained Architecture for Secure Federated
Learning-based Traffic Prediction [4.3030251749726345]
Federated Learning (FL) is a privacy-preserving machine learning technology.
Security and privacy guarantees could be compromised due to malicious participants and the centralized FL server.
This article proposed a bi-level blockchained architecture for secure federated learning-based traffic prediction.
arXiv Detail & Related papers (2023-10-23T08:06:05Z) - FedBlockHealth: A Synergistic Approach to Privacy and Security in
IoT-Enabled Healthcare through Federated Learning and Blockchain [2.993954417409032]
The rapid adoption of Internet of Things (IoT) devices in healthcare has introduced new challenges in preserving data privacy, security and patient safety.
Traditional approaches need to ensure security and privacy while maintaining computational efficiency.
This paper proposes a novel hybrid approach combining federated learning and blockchain technology to provide a secure and privacy-preserved solution.
arXiv Detail & Related papers (2023-04-16T01:55:31Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Local Differential Privacy based Federated Learning for Internet of
Things [72.83684013377433]
Internet of Vehicles (IoV) simulates a large variety of crowdsourcing applications such as Waze, Uber, and Amazon Mechanical Turk, etc.
Users of these applications report the real-time traffic information to the cloud server which trains a machine learning model based on traffic information reported by users for intelligent traffic management.
In this paper, we propose to integrate federated learning and local differential privacy (LDP) to facilitate the crowdsourcing applications to achieve the machine learning model.
arXiv Detail & Related papers (2020-04-19T14:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.