Evidential Calibrated Uncertainty-Guided Interactive Segmentation paradigm for Ultrasound Images
- URL: http://arxiv.org/abs/2501.01072v1
- Date: Thu, 02 Jan 2025 05:41:25 GMT
- Title: Evidential Calibrated Uncertainty-Guided Interactive Segmentation paradigm for Ultrasound Images
- Authors: Jiang Shang, Yuanmeng Wu, Xiaoxiang Han, Xi Chen, Qi Zhang,
- Abstract summary: Evidential Uncertainty-Guided Interactive (EUGIS) is an end-to-end interactive segmentation paradigm based on evidential uncertainty estimation for ultrasound image segmentation.
Our method can effectively simulate the interactive behavior of well-trained radiologists, enhancing the targeted of sampling while reducing the number of prompts and iterations required.
- Score: 8.010602776500237
- License:
- Abstract: Accurate and robust ultrasound image segmentation is critical for computer-aided diagnostic systems. Nevertheless, the inherent challenges of ultrasound imaging, such as blurry boundaries and speckle noise, often cause traditional segmentation methods to struggle with performance. Despite recent advancements in universal image segmentation, such as the Segment Anything Model, existing interactive segmentation methods still suffer from inefficiency and lack of specialization. These methods rely heavily on extensive accurate manual or random sampling prompts for interaction, necessitating numerous prompts and iterations to reach satisfactory performance. In response to this challenge, we propose the Evidential Uncertainty-Guided Interactive Segmentation (EUGIS), an end-to-end, efficient tiered interactive segmentation paradigm based on evidential uncertainty estimation for ultrasound image segmentation. Specifically, EUGIS harnesses evidence-based uncertainty estimation, grounded in Dempster-Shafer theory and Subjective Logic, to gauge the level of uncertainty in the predictions of model for different regions. By prioritizing sampling the high-uncertainty region, our method can effectively simulate the interactive behavior of well-trained radiologists, enhancing the targeted of sampling while reducing the number of prompts and iterations required.Additionally, we propose a trainable calibration mechanism for uncertainty estimation, which can further optimize the boundary between certainty and uncertainty, thereby enhancing the confidence of uncertainty estimation.
Related papers
- SPA: Efficient User-Preference Alignment against Uncertainty in Medical Image Segmentation [8.34233304138989]
textbfSPA efficiently adapts to diverse test-time preferences with minimal human interaction.
It reduces clinician workload in reaching the preferred segmentation.
It demonstrates 1) a significant reduction in clinician time and effort compared with existing interactive segmentation approaches.
arXiv Detail & Related papers (2024-11-23T10:27:08Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
We propose CRISP a ContRastive Image for uncertainty Prediction method.
At its core, CRISP implements a contrastive method to learn a joint latent space which encodes a distribution of valid segmentations.
We use this joint latent space to compare predictions to thousands of latent vectors and provide anatomically consistent uncertainty maps.
arXiv Detail & Related papers (2022-06-15T16:56:58Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
This paper proposes an interactive segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA)
The evaluation is established through a novel action-based confidence network, and the corrective actions are obtained from MARL.
Experimental results on various medical image datasets have shown the significant performance of the proposed algorithm.
arXiv Detail & Related papers (2021-11-15T12:38:56Z) - Adaptive Affinity Loss and Erroneous Pseudo-Label Refinement for Weakly
Supervised Semantic Segmentation [48.294903659573585]
In this paper, we propose to embed affinity learning of multi-stage approaches in a single-stage model.
A deep neural network is used to deliver comprehensive semantic information in the training phase.
Experiments are conducted on the PASCAL VOC 2012 dataset to evaluate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2021-08-03T07:48:33Z) - Analyzing Epistemic and Aleatoric Uncertainty for Drusen Segmentation in
Optical Coherence Tomography Images [4.125187280299246]
Age-related macular degeneration (AMD) is one of the leading causes of permanent vision loss in people aged over 60 years.
We develop a U-Net based drusen segmentation model and quantify the segmentation uncertainty.
arXiv Detail & Related papers (2021-01-21T23:34:29Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.