論文の概要: Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
- arxiv url: http://arxiv.org/abs/2501.01087v3
- Date: Wed, 08 Jan 2025 11:40:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 11:35:20.776415
- Title: Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
- Title(参考訳): GLinearによるシンプルさとソフィケーション:時系列予測の強化のための新しいアーキテクチャ
- Authors: Syed Tahir Hussain Rizvi, Neel Kanwal, Muddasar Naeem, Alfredo Cuzzocrea, Antonio Coronato,
- Abstract要約: Time Series Forecasting (TSF)は多くの分野において重要なアプリケーションです。
最近の研究では、より単純な線形モデルは、TSFタスクの複雑なTransformerベースのモデルに比べて、性能が優れているか、少なくとも競合する可能性があることが示唆されている。
本稿では,多変量TSFのための新しいデータ効率アーキテクチャGLinearを提案する。
- 参考スコア(独自算出の注目度): 7.887606414896063
- License:
- Abstract: Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, GLinear, for multivariate TSF that exploits periodic patterns to provide better accuracy. It also provides better prediction accuracy by using a smaller amount of historical data compared to other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictor (Autoformer) shows that the GLinear, despite being parametrically efficient, significantly outperforms the existing architectures in most cases of multivariate TSF. We hope that the proposed GLinear opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis.
- Abstract(参考訳): Time Series Forecasting (TSF)は多くの分野において重要なアプリケーションです。
トランスフォーマーが長いシーケンスを理解するのが得意であるにもかかわらず、時系列データにおける時間的関係の保存に苦労しているかどうかについては議論がある。
最近の研究では、より単純な線形モデルは、TSFタスクの複雑なTransformerベースのモデルに比べて、性能が優れているか、少なくとも競合する可能性があることが示唆されている。
本稿では,多変量TSFのための新しいデータ効率アーキテクチャGLinearを提案する。
また、他の最先端の線形予測器と比較して、少量の履歴データを使用することで予測精度も向上する。
提案した予測器の性能を評価するために、4つの異なるデータセット(ETTh1、Electricity、Traffic、Weather)が使用される。
NLinear、DLinear、RLinearといった最先端の線形アーキテクチャと、トランスフォーマーベースの時系列予測器(Autoformer)との性能比較では、パラメトリック的に効率的であるにもかかわらず、GLinearは、多変量TSFのほとんどの場合において既存のアーキテクチャを著しく上回っている。
提案されたGLinearは、データと計算効率のよい時系列分析のための、よりシンプルで洗練されたアーキテクチャの研究と開発の新しい前線を開くことを願っている。
関連論文リスト
- Are Self-Attentions Effective for Time Series Forecasting? [4.990206466948269]
時系列予測は、複数のドメインやさまざまなシナリオにわたるアプリケーションにとって不可欠である。
近年の研究では、より単純な線形モデルは、複雑なトランスフォーマーベースのアプローチよりも優れていることが示されている。
我々は、新しいアーキテクチャ、クロスアテンションのみの時系列変換器(CATS)を導入する。
提案モデルでは,平均二乗誤差が最小であり,既存のモデルに比べてパラメータが少ないため,性能が向上する。
論文 参考訳(メタデータ) (2024-05-27T06:49:39Z) - tsGT: Stochastic Time Series Modeling With Transformer [0.12905935507312413]
本稿では,汎用トランスアーキテクチャ上に構築された時系列モデルであるtsGTを紹介する。
tsGT は MAD と RMSE の最先端モデルより優れており、QL と CRPS のピアよりも 4 つの一般的なデータセットで優れていることを示す。
論文 参考訳(メタデータ) (2024-03-08T22:59:41Z) - Spatiotemporal-Linear: Towards Universal Multivariate Time Series
Forecasting [10.404951989266191]
本稿ではSTL(Spatio-Temporal-Linear)フレームワークを紹介する。
STLは、Linearベースのアーキテクチャを拡張するために、時間組込みと空間インフォームドのバイパスをシームレスに統合する。
実証的な証拠は、さまざまな観測時間と予測期間とデータセットにわたって、LinearとTransformerのベンチマークを上回り、STLの成果を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-12-22T17:46:34Z) - Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors [44.5740422079]
標準的なデノベーション目的による事前トレーニングは、複数のアーキテクチャで劇的に向上することを示す。
先行研究とは対照的に、適切に事前訓練された場合の長距離アリーナでのS4の性能に適合するバニラトランスフォーマーが見つかる。
論文 参考訳(メタデータ) (2023-10-04T17:17:06Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - GC-GRU-N for Traffic Prediction using Loop Detector Data [5.735035463793008]
シアトルのループ検出器のデータを15分以上収集し、その問題を時空で再現する。
モデルは、最速の推論時間と非常に近いパフォーマンスで第2位(トランスフォーマー)。
論文 参考訳(メタデータ) (2022-11-13T06:32:28Z) - Random Feature Attention [69.4671822971207]
ソフトマックス関数を近似するためにランダム特徴法を用いる線形時間空間アテンション RFA を提案する。
RFAは、従来のソフトマックスアテンションのドロップイン代替として使用することができ、オプションのゲーティング機構を通じて、遅延バイアスで直接学習する方法を提供する。
言語モデリングと機械翻訳の実験は、RFAが強力なトランスのベースラインと類似またはより良いパフォーマンスを達成することを実証します。
論文 参考訳(メタデータ) (2021-03-03T02:48:56Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。