論文の概要: Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2401.11929v4
- Date: Wed, 16 Oct 2024 12:20:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:38:32.774047
- Title: Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting
- Title(参考訳): パーシモニーと能力 : 長期連続予測における分解の両立
- Authors: Jinliang Deng, Feiyang Ye, Du Yin, Xuan Song, Ivor W. Tsang, Hui Xiong,
- Abstract要約: 時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
- 参考スコア(独自算出の注目度): 46.63798583414426
- License:
- Abstract: Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis, characterized by extensive input sequences, as opposed to the shorter spans typical of traditional approaches. While longer sequences inherently offer richer information for enhanced predictive precision, prevailing studies often respond by escalating model complexity. These intricate models can inflate into millions of parameters, resulting in prohibitive parameter scales. Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation while achieving uniformly superior and robust results across various datasets. Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks, using over 99 \% fewer parameters than the majority of competing methods. Through this work, we aim to unleash the power of a restricted set of parameters by capitalizing on domain characteristics--a timely reminder that in the realm of LTSF, bigger is not invariably better.
- Abstract(参考訳): 長期時系列予測(LTSF)は、伝統的なアプローチに典型的な短いスパンとは対照的に、広範囲な入力シーケンスを特徴とする時系列解析における重要なフロンティアである。
より長いシーケンスは本質的に予測精度を高めるためによりリッチな情報を提供するが、一般的な研究はモデルの複雑さをエスカレーションすることによって応答することが多い。
これらの複雑なモデルは数百万のパラメータに膨らみ、結果として禁断的なパラメータスケールをもたらす。
本研究は, 解析的および実証的証拠の両面から, 分解が多量のモデルインフレーションを包含する鍵であり, 各種データセットに対して一様に優れ, 頑健な結果が得られることを示した。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れており、競合するほとんどの手法よりも99 %以上少ないパラメータを使用する。
本研究は,制限されたパラメータセットのパワーを,ドメインの特性を活かして解き放つことを目的としている。
関連論文リスト
- Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting [8.458068118782519]
最近の線形および変圧器ベースの予測器は時系列予測において優れた性能を示している。
時系列データにおける長距離依存関係を効果的に扱うことができないという点で制約されている。
本稿では,試料間の時間的相関を保った高速かつ効果的なスペクトル注意機構を提案する。
論文 参考訳(メタデータ) (2024-10-28T06:17:20Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
時系列の周期と傾向を捉えるために,MSDCN(Multi Scale Dilated Convolution Network)を提案する。
指数関数的に増加する拡張と異なるカーネルサイズを持つ異なる畳み込みブロックを設計し、異なるスケールで時系列データをサンプリングする。
提案手法の有効性を検証するため,8つの長期時系列予測ベンチマークデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-09T02:11:01Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
我々は,観測可能な時系列によって示唆される本質的な潜伏因子を推定するための新しい枠組みを開発する。
予測可能性,充足性,識別性という3つの特性を導入し,これらの特性を強力な潜伏力学モデルを用いてモデル化する。
複数の実データに対する実験結果から, 時系列予測の手法の有効性が示唆された。
論文 参考訳(メタデータ) (2023-03-18T14:37:37Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARFは、時間依存重みと空間依存因子の間の積変数による高次元データを近似する。
DSARFは、深い切替ベクトル自己回帰因子化の観点から重みをパラメータ化するという最先端技術とは異なる。
本実験は, 最先端手法と比較して, DSARFの長期的, 短期的予測誤差において優れた性能を示すものである。
論文 参考訳(メタデータ) (2020-09-10T20:15:59Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。