論文の概要: MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
- arxiv url: http://arxiv.org/abs/2501.01110v1
- Date: Thu, 02 Jan 2025 07:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:07.578079
- Title: MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
- Title(参考訳): MalCL: GANベースの生成リプレイを活用して, マルウェア分類における破滅的予測に対処する
- Authors: Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, Se Eun Oh,
- Abstract要約: マルウェア分類のための継続的学習(CL)は、急速に進化するマルウェアの脅威に対処する。
本稿では,GAN(Generative Adversarial Networks)を利用したGRベースのCLシステムを提案する。
本システムでは,Windows のマルウェアサンプルに対して平均 55% の精度を達成し,GR ベースのモデルよりも28% 向上した。
- 参考スコア(独自算出の注目度): 1.9961741493139218
- License:
- Abstract: Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at \url {https://github.com/MalwareReplayGAN/MalCL}\footnote{The code will be made public upon the presentation of the paper}.
- Abstract(参考訳): マルウェア分類のための継続的学習(CL)は、マルウェアの脅威の急速に進化する性質と、新しいタイプの頻繁な出現に対処する。
Generative Replay (GR)ベースのCLシステムは、生成モデルを使用して過去のデータの合成バージョンを生成し、それを新しいデータと組み合わせて一次モデルを再訓練する。
この領域の伝統的な機械学習技術は、古いデータに対するモデルの性能が時間の経過とともに低下する、破滅的な忘れに苦しむことが多い。
本稿では,GAN(Generative Adversarial Networks)を利用したGRベースのCLシステムを提案する。
さらに,モデルに隠された表現に基づいて,サンプルを再生するための革新的な選択方式を実装した。
クラスインクリメンタルな学習シナリオ — 新しいクラスを複数のタスクで継続的に導入する — において、WindowsとAndroidのマルウェアデータセットに対する包括的な評価は、以前の方法よりも大幅にパフォーマンスが向上したことを示している。
例えば,Windows のマルウェアサンプルの平均精度は 55% であり,GR ベースのモデルでは 28% をはるかに上回っている。
本研究は,GRベースのマルウェア分類システムを構築するための実践的な知見を提供する。
実装は \url {https://github.com/MalwareReplayGAN/MalCL}\footnote{The code will be public on the presentation of the paper} で公開されている。
関連論文リスト
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
本稿では,C-GCD(Continuous Generalized Category Discovery)の未探索課題について考察する。
C-GCDは、学習済みのクラスを認識する能力を維持しながら、ラベルのないデータから新しいクラスを漸進的に発見することを目的としている。
本稿では,ハードネスを意識したプロトタイプサンプリングとソフトエントロピー正規化を特徴とする,偏りのある学習フレームワークであるHappyを紹介する。
論文 参考訳(メタデータ) (2024-10-09T04:18:51Z) - Continual Domain Incremental Learning for Privacy-aware Digital Pathology [3.6630930118966814]
連続学習(CL)技術は、分散シフト条件で新しいデータを学習する際の過去のデータ忘れを減らすことを目的としている。
我々は、過去のデータを格納し、新しいデータで潜在リプレイを行うために、ジェネレーティブ潜在リプレイベースのCL(GLRCL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-09-10T12:21:54Z) - Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples [10.352741619176383]
本研究では,ドリフトマルウェアの検出と分類を行う新しい手法を提案する。
グラフニューラルネットワークと対向ドメイン適応を利用して、マルウェア制御フローグラフのドリフト不変性を学習する。
当社のアプローチは,公開ベンチマークや,セキュリティ企業によって毎日報告されている実世界のマルウェアデータベース上でのドリフトマルウェアの検出を大幅に改善する。
論文 参考訳(メタデータ) (2024-07-18T22:06:20Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - When a RF Beats a CNN and GRU, Together -- A Comparison of Deep Learning
and Classical Machine Learning Approaches for Encrypted Malware Traffic
Classification [4.495583520377878]
悪意のあるトラフィック分類の場合、最先端のDLベースのソリューションは、古典的なMLベースのソリューションよりも必ずしも優れているとは限らないことを示す。
マルウェア検出、マルウェア家族分類、ゼロデイ攻撃の検出、反復的に増加するデータセットの分類など、さまざまなタスクに2つのよく知られたデータセットを使用することで、この発見を実証する。
論文 参考訳(メタデータ) (2022-06-16T08:59:53Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - GANG-MAM: GAN based enGine for Modifying Android Malware [1.6799377888527687]
機械学習に基づくマルウェア検出は、敵の攻撃に対して脆弱である。
そこで我々は,Androidのマルウェアを強力に回避し,悪質なプログラムを修正するための特徴ベクトルを生成するシステムを提案する。
論文 参考訳(メタデータ) (2021-09-27T18:36:20Z) - Dual-Teacher Class-Incremental Learning With Data-Free Generative Replay [49.691610143011566]
クラスインクリメンタルラーニング(CIL)のための2つの新しい知識伝達手法を提案する。
まず,データフリーな生成リプレイ(DF-GR)を提案し,生成モデルからの合成サンプルを用いてCILの破滅的忘れを緩和する。
第2に,2人の教師から1人の生徒に知識蒸留を行うための2つの教員情報蒸留(DT-ID)を導入する。
論文 参考訳(メタデータ) (2021-06-17T22:13:15Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
データフリークラスインクリメンタルラーニング(DFCIL)における高インパクト問題について考察する。
そこで本研究では, 改良型クロスエントロピートレーニングと重要重み付き特徴蒸留に寄与するDFCILの新たなインクリメンタル蒸留戦略を提案する。
本手法は,共通クラスインクリメンタルベンチマークにおけるSOTA DFCIL法と比較して,最終タスク精度(絶対差)が25.1%向上する。
論文 参考訳(メタデータ) (2021-06-17T17:56:08Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。