論文の概要: InDeed: Interpretable image deep decomposition with guaranteed generalizability
- arxiv url: http://arxiv.org/abs/2501.01127v1
- Date: Thu, 02 Jan 2025 07:58:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:13:45.744163
- Title: InDeed: Interpretable image deep decomposition with guaranteed generalizability
- Title(参考訳): InDeed: 一般化性を保証する解釈可能な画像深部分解
- Authors: Sihan Wang, Shangqi Gao, Fuping Wu, Xiahai Zhuang,
- Abstract要約: 画像分解は、イメージを基本成分に分解することを目的としている。
深層学習はそのようなタスクには強力だが、解釈可能性と一般化性に焦点を合わせることはめったにない。
本稿では,階層型ベイズモデルとディープラーニングを組み合わせた,解釈可能な深層画像分解のための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 28.595151003310452
- License:
- Abstract: Image decomposition aims to analyze an image into elementary components, which is essential for numerous downstream tasks and also by nature provides certain interpretability to the analysis. Deep learning can be powerful for such tasks, but surprisingly their combination with a focus on interpretability and generalizability is rarely explored. In this work, we introduce a novel framework for interpretable deep image decomposition, combining hierarchical Bayesian modeling and deep learning to create an architecture-modularized and model-generalizable deep neural network (DNN). The proposed framework includes three steps: (1) hierarchical Bayesian modeling of image decomposition, (2) transforming the inference problem into optimization tasks, and (3) deep inference via a modularized Bayesian DNN. We further establish a theoretical connection between the loss function and the generalization error bound, which inspires a new test-time adaptation approach for out-of-distribution scenarios. We instantiated the application using two downstream tasks, \textit{i.e.}, image denoising, and unsupervised anomaly detection, and the results demonstrated improved generalizability as well as interpretability of our methods. The source code will be released upon the acceptance of this paper.
- Abstract(参考訳): 画像分解は、多くの下流タスクに不可欠な基本成分に画像を分析することを目的としており、また、本質的には、解析にある程度の解釈性を提供する。
深層学習はそのようなタスクには強力だが、解釈可能性と一般化性に焦点を合わせることで、驚くべきことに研究されることはめったにない。
本研究では,階層型ベイズモデリングとディープラーニングを組み合わせて,アーキテクチャのモジュラー化とモデル一般化が可能なディープニューラルネットワーク(DNN)を構築することによって,解釈可能なディープイメージ分解のための新しいフレームワークを提案する。
提案手法は,(1)画像分解の階層的ベイズモデル,(2)推論問題を最適化タスクに変換する,(3)モジュール化されたベイズDNNによる深部推論の3段階を含む。
さらに、損失関数と一般化誤差境界の理論的関係を確立し、アウト・オブ・ディストリビューションシナリオに対する新しいテスト時間適応アプローチを誘発する。
そこで我々は,2つの下流タスクである‘textit{i.e.},イメージデノイング,教師なし異常検出を用いてアプリケーションをインスタンス化し,本手法の一般化性および解釈性の向上を実証した。
ソースコードは、この記事の受理時に公開される。
関連論文リスト
- Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions [30.148969711689773]
本稿では, 単一画像深度推定タスクにおいて, ディストリビューションデータの挑戦によって生じる複雑さに対処する新しい手法を提案する。
我々は,包括的課題と関連する深度情報を用いて,新たなユーザ定義シーンを体系的に生成する。
これは、深度認識制御による最先端のテキスト・画像拡散モデルを活用することで実現される。
論文 参考訳(メタデータ) (2024-07-23T17:59:59Z) - Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration [62.41329042683779]
本稿では, 回転対称性を組み込んだ高精度な回転同変近位ネットワークを提案する。
本研究は, 回転対称性の先行を深く展開する枠組みに効果的に組み込む, 高精度な回転同変近位ネットワークを提案する。
論文 参考訳(メタデータ) (2023-12-25T11:53:06Z) - Intrinsic Image Decomposition via Ordinal Shading [0.0]
内在的分解は、逆レンダリングや計算写真パイプラインにおいて重要な役割を果たす基本的な中間レベルの視覚問題である。
シフト・スケール不変の損失を用いた高密度オーディナルシェーディング定式化を行い、オーディナルシェーディングキューを推定する。
次に、第2のネットワークを用いた低分解能および高分解能の順序推定を組み合わせ、大域的コヒーレンシーと局所的詳細の両方でシェーディング推定を生成する。
論文 参考訳(メタデータ) (2023-11-21T18:58:01Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing [28.790900756506833]
3D対応のGANは、2D対応の編集機能を保ちながら、ビュー合成のための新しい機能を提供する。
GANインバージョンは、入力画像や動画を再構成する潜時コードを求める重要なステップであり、この潜時コードを操作することで様々な編集タスクを可能にする。
我々は3次元GANの入力からOODオブジェクトを明示的にモデル化することでこの問題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:59:56Z) - DeepMLE: A Robust Deep Maximum Likelihood Estimator for Two-view
Structure from Motion [9.294501649791016]
動きからの2次元構造(SfM)は3次元再構成と視覚SLAM(vSLAM)の基礎となる。
本稿では,2視点SfM問題を最大最大推定(MLE)として定式化し,DeepMLEと表記されるフレームワークを用いて解いた。
提案手法は,最先端の2ビューSfM手法よりも精度と一般化能力において優れる。
論文 参考訳(メタデータ) (2022-10-11T15:07:25Z) - HandFlow: Quantifying View-Dependent 3D Ambiguity in Two-Hand
Reconstruction with Normalizing Flow [73.7895717883622]
条件付き正規化フローフレームワークにおける可塑性再構成の分布を明示的にモデル化する。
この課題に対して,明示的な曖昧さモデリングが適していることを示す。
論文 参考訳(メタデータ) (2022-10-04T15:42:22Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
そこで本研究では,PCCTにおける材料分解のための新たな深層学習ソリューションを提案する。
提案手法は,最大推定値,変分法,および完全学習ネットワークよりも優れる。
論文 参考訳(メタデータ) (2022-08-05T19:05:16Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
2次元構造移動(SfM)は3次元再構成と視覚SLAMの基礎となる。
古典パイプラインの適切性を活用することで,深部2視点sfmの問題を再検討することを提案する。
本手法は,1)2つのフレーム間の密対応を予測する光フロー推定ネットワーク,2)2次元光フロー対応から相対カメラポーズを計算する正規化ポーズ推定モジュール,3)エピポーラ幾何を利用して探索空間を縮小し,密対応を洗練し,相対深度マップを推定するスケール不変深さ推定ネットワークからなる。
論文 参考訳(メタデータ) (2021-04-01T15:31:20Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。