Large Language Model-Enhanced Symbolic Reasoning for Knowledge Base Completion
- URL: http://arxiv.org/abs/2501.01246v1
- Date: Thu, 02 Jan 2025 13:14:28 GMT
- Title: Large Language Model-Enhanced Symbolic Reasoning for Knowledge Base Completion
- Authors: Qiyuan He, Jianfei Yu, Wenya Wang,
- Abstract summary: Large language models (LLMs) and rule-based reasoning offer a powerful solution for improving the flexibility and reliability of Knowledge Base Completion.
We propose a novel framework consisting of a Subgraph Extractor, an LLM Proposer, and a Rule Reasoner.
Our approach offers several key benefits: the utilization of LLMs to enhance the richness and diversity of the proposed rules, and the integration with rule-based reasoning to improve reliability.
- Score: 28.724919973497943
- License:
- Abstract: Integrating large language models (LLMs) with rule-based reasoning offers a powerful solution for improving the flexibility and reliability of Knowledge Base Completion (KBC). Traditional rule-based KBC methods offer verifiable reasoning yet lack flexibility, while LLMs provide strong semantic understanding yet suffer from hallucinations. With the aim of combining LLMs' understanding capability with the logical and rigor of rule-based approaches, we propose a novel framework consisting of a Subgraph Extractor, an LLM Proposer, and a Rule Reasoner. The Subgraph Extractor first samples subgraphs from the KB. Then, the LLM uses these subgraphs to propose diverse and meaningful rules that are helpful for inferring missing facts. To effectively avoid hallucination in LLMs' generations, these proposed rules are further refined by a Rule Reasoner to pinpoint the most significant rules in the KB for Knowledge Base Completion. Our approach offers several key benefits: the utilization of LLMs to enhance the richness and diversity of the proposed rules and the integration with rule-based reasoning to improve reliability. Our method also demonstrates strong performance across diverse KB datasets, highlighting the robustness and generalizability of the proposed framework.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Drawing the Line: Enhancing Trustworthiness of MLLMs Through the Power of Refusal [21.342265570934995]
Existing methods have largely overlooked the importance of refusal responses as a means of enhancing MLLMs reliability.
We present the Information Boundary-aware Learning Framework (InBoL), a novel approach that empowers MLLMs to refuse to answer user queries when encountering insufficient information.
This framework introduces a comprehensive data generation pipeline and tailored training strategies to improve the model's ability to deliver appropriate refusal responses.
arXiv Detail & Related papers (2024-12-15T14:17:14Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR)
We propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations.
arXiv Detail & Related papers (2024-03-25T05:12:18Z) - Integrating Large Language Models with Graphical Session-Based
Recommendation [8.086277931395212]
We introduce large language models with graphical Session-Based recommendation, named LLMGR.
This framework bridges the gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks.
This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing.
arXiv Detail & Related papers (2024-02-26T12:55:51Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z) - ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
We propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs.
Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs.
To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs.
arXiv Detail & Related papers (2023-09-04T11:38:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.