Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs
- URL: http://arxiv.org/abs/2505.15210v1
- Date: Wed, 21 May 2025 07:38:45 GMT
- Title: Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs
- Authors: Jie Ma, Ning Qu, Zhitao Gao, Rui Xing, Jun Liu, Hongbin Pei, Jiang Xie, Linyun Song, Pinghui Wang, Jing Tao, Zhou Su,
- Abstract summary: We propose a trustworthy reasoning framework, termed Deliberation over Priors (DP)<n>DP integrates structural priors into Large Language Models (LLMs) through a combination of supervised fine-tuning and Kahneman-Tversky optimization.<n>Our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors.
- Score: 31.457954100196524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
Related papers
- TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models [5.678291291711662]
TRAIL is a novel, unified framework for Thinking, Reasoning, And Incremental Learning.<n>It couples joint inference and dynamic KG refinement with large language models.<n>Extensive experiments on multiple benchmarks demonstrate that TRAIL outperforms existing KG-augmented and retrieval-augmented LLM baselines by 3% to 13%.
arXiv Detail & Related papers (2025-08-06T14:25:05Z) - Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Mitigating Hidden Confounding by Progressive Confounder Imputation via Large Language Models [46.92706900119399]
We make the first attempt to mitigate hidden confounding using large language models (LLMs)<n>We propose ProCI, a framework that elicits the semantic and world knowledge of LLMs to iteratively generate, impute, and validate hidden confounders.<n>Extensive experiments demonstrate that ProCI uncovers meaningful confounders and significantly improves treatment effect estimation.
arXiv Detail & Related papers (2025-06-26T03:49:13Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger [51.01841635655944]
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks.<n>Existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge.<n>We propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method.
arXiv Detail & Related papers (2025-06-09T14:00:57Z) - CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
Chain-of-thought (CoT) reasoning boosts large language models' (LLMs) performance on complex tasks.<n>We propose CoT-RAG, a novel reasoning framework with three key designs.<n>We show significant accuracy gains--ranging from 4.0% to 44.3%--over state-of-the-art methods.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
Large language models (LLMs) frequently hallucinate due to misaligned self-awareness.<n>Existing approaches mitigate hallucinations via uncertainty estimation or query rejection.<n>We propose the Explicit Knowledge Boundary Modeling framework to integrate fast and slow reasoning systems.
arXiv Detail & Related papers (2025-03-04T03:16:02Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - GRATR: Zero-Shot Evidence Graph Retrieval-Augmented Trustworthiness Reasoning [7.3795957796342195]
Trustworthiness reasoning aims to enable agents in multiplayer games with incomplete information to identify potential allies and adversaries.<n>We introduce the graph retrieval-augmented trustworthiness reasoning (GRATR) framework, which retrieves observable evidence from the game environment.
arXiv Detail & Related papers (2024-08-22T12:21:22Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.