Revisiting LLM Reasoning via Information Bottleneck
- URL: http://arxiv.org/abs/2507.18391v1
- Date: Thu, 24 Jul 2025 13:14:25 GMT
- Title: Revisiting LLM Reasoning via Information Bottleneck
- Authors: Shiye Lei, Zhihao Cheng, Kai Jia, Dacheng Tao,
- Abstract summary: Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
- Score: 57.519119962528166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR). By leveraging simple rule-based rewards, RL effectively incentivizes LLMs to produce extended chain-of-thought (CoT) reasoning trajectories, progressively guiding them toward correct answers. However, existing approaches remain largely heuristic and intuition-driven, limiting the development of principled methodologies. In this paper, we present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle, introducing IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable across diverse prompts. We derive a practical token-level surrogate objective and propose an efficient approximation, resulting in the lightweight IB regularization method. This technique integrates seamlessly into existing RL-based post-training frameworks without additional computational overhead, requiring only a one-line code modification. Empirically, we validate IB regularization across multiple mathematical reasoning benchmarks and RL algorithms, demonstrating consistent improvements in LLM reasoning performance.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Hybrid Latent Reasoning via Reinforcement Learning [51.06635386903026]
We explore latent reasoning by leveraging the capabilities of large language models (LLMs) via reinforcement learning (RL)<n>We introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that integrates prior hidden states into sampled tokens with a learnable gating mechanism.<n>HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths.
arXiv Detail & Related papers (2025-05-24T01:26:16Z) - Bridging Supervised Learning and Reinforcement Learning in Math Reasoning [55.889740979706815]
Reinforcement Learning (RL) has played a central role in the recent surge of math abilities by enabling self-improvement through binary verifier signals.<n>In this work, we propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers.
arXiv Detail & Related papers (2025-05-23T17:17:40Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - RL in Name Only? Analyzing the Structural Assumptions in RL post-training for LLMs [14.78605805191225]
Reinforcement learning-based post-training of large language models (LLMs) has recently gained attention.<n>We critically examine the formulation and assumptions underlying these methods.
arXiv Detail & Related papers (2025-05-19T19:57:15Z) - R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization [86.32257216965229]
We propose a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding.<n>StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR)<n>With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning.
arXiv Detail & Related papers (2025-03-17T08:51:44Z) - Argumentation Computation with Large Language Models : A Benchmark Study [6.0682923348298194]
Large language models (LLMs) have made significant advancements in neuro-symbolic computing.<n>We aim to investigate the capability of LLMs in determining the extensions of various abstract argumentation semantics.
arXiv Detail & Related papers (2024-12-21T18:23:06Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.<n>Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.