論文の概要: Learning Spectral Methods by Transformers
- arxiv url: http://arxiv.org/abs/2501.01312v2
- Date: Sun, 05 Jan 2025 15:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 13:45:28.652988
- Title: Learning Spectral Methods by Transformers
- Title(参考訳): 変圧器によるスペクトル法学習
- Authors: Yihan He, Yuan Cao, Hong-Yu Chen, Dennis Wu, Jianqing Fan, Han Liu,
- Abstract要約: 多層トランスフォーマーは、十分な数の事前学習インスタンスを与えられた場合、アルゴリズム自体を学習可能であることを示す。
この学習パラダイムは、コンテキスト内学習設定とは異なるものであり、人間の脳の学習手順と似ている。
- 参考スコア(独自算出の注目度): 18.869174453242383
- License:
- Abstract: Transformers demonstrate significant advantages as the building block of modern LLMs. In this work, we study the capacities of Transformers in performing unsupervised learning. We show that multi-layered Transformers, given a sufficiently large set of pre-training instances, are able to learn the algorithms themselves and perform statistical estimation tasks given new instances. This learning paradigm is distinct from the in-context learning setup and is similar to the learning procedure of human brains where skills are learned through past experience. Theoretically, we prove that pre-trained Transformers can learn the spectral methods and use the classification of bi-class Gaussian mixture model as an example. Our proof is constructive using algorithmic design techniques. Our results are built upon the similarities of multi-layered Transformer architecture with the iterative recovery algorithms used in practice. Empirically, we verify the strong capacity of the multi-layered (pre-trained) Transformer on unsupervised learning through the lens of both the PCA and the Clustering tasks performed on the synthetic and real-world datasets.
- Abstract(参考訳): トランスフォーマーは、現代のLLMのビルディングブロックとして大きな利点を示している。
本研究では,教師なし学習におけるトランスフォーマーの能力について検討する。
事前学習インスタンスが十分に多層化されている多層トランスフォーマーは、アルゴリズム自体を学習し、新しいインスタンスに対して統計的推定タスクを実行することができることを示す。
この学習パラダイムは、文脈内学習設定とは異なるものであり、過去の経験を通じてスキルが学習される人間の脳の学習手順と似ている。
理論的には、事前学習した変換器はスペクトル法を学習し、二クラスガウス混合モデルの分類を例として用いることができる。
我々の証明はアルゴリズム設計技術を用いて構築されている。
本研究は,多層トランスフォーマーアーキテクチャと繰り返しリカバリアルゴリズムの類似性に基づくものである。
実験により,PCAのレンズによる教師なし学習における多層(事前学習)トランスフォーマーの強い能力と,合成および実世界のデータセット上で実行されるクラスタリングタスクを検証した。
関連論文リスト
- One-Layer Transformer Provably Learns One-Nearest Neighbor In Context [48.4979348643494]
本研究では、1層変圧器が1層近傍の規則を学習する能力について検討する。
単一のソフトマックスアテンション層は、ワンアレスト隣人のように振る舞うことをうまく学ぶことができる。
論文 参考訳(メタデータ) (2024-11-16T16:12:42Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
低ランク計算としての効率的な数値学習と推論アルゴリズムはトランスフォーマーに基づく適応学習に優れた性能を持つことを示す。
我々は、等級モデルが適応性を改善しながら一般化にどのように影響するかを分析する。
適切なマグニチュードベースのテストは,テストパフォーマンスに多少依存している,と結論付けています。
論文 参考訳(メタデータ) (2024-06-24T23:00:58Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
本稿では、より複雑なシナリオにおける文脈内学習(ICL)の理解を、表現を用いた学習で研究する。
合成文内学習問題を合成構造を用いて構築し、ラベルは複雑なが固定された表現関数によって入力に依存する。
理論的には、そのようなアルゴリズムを軽度な深さと大きさでほぼ実装するトランスフォーマーの存在を示す。
論文 参考訳(メタデータ) (2023-10-16T17:40:49Z) - Transformers as Decision Makers: Provable In-Context Reinforcement Learning via Supervised Pretraining [25.669038513039357]
本稿では,テキスト内強化学習のための教師付き事前学習を理論的に分析する枠組みを提案する。
ReLUに着目した変換器は、最適に近いオンライン強化学習アルゴリズムを効率的に近似できることを示す。
論文 参考訳(メタデータ) (2023-10-12T17:55:02Z) - Understanding In-Context Learning in Transformers and LLMs by Learning
to Learn Discrete Functions [32.59746882017483]
本論文では,トランスフォーマーが一つのタスクを解くために2つの異なるアルゴリズムを実装することを学習できることを示す。
また,既存のLarge Language Models (LLMs) は,予測タスクにおいて最寄りのベースラインと競合することを示す。
論文 参考訳(メタデータ) (2023-10-04T17:57:33Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
本稿では,意思決定問題における変換器の文脈内学習能力について検討する。
本稿では,変換器が最適動作を予測する教師付き事前学習法であるDPT(Decision-Pretrained Transformer)を導入,研究する。
事前学習した変換器は、オンラインと保守主義の両方をオフラインで探索することで、コンテキスト内における様々なRL問題の解決に利用できる。
論文 参考訳(メタデータ) (2023-06-26T17:58:50Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
この研究はまず、変換器がICLを実行するための包括的な統計理論を提供する。
コンテクストにおいて、トランスフォーマーは、幅広い種類の標準機械学習アルゴリズムを実装可能であることを示す。
エンフィングル変換器は、異なるベースICLアルゴリズムを適応的に選択することができる。
論文 参考訳(メタデータ) (2023-06-07T17:59:31Z) - Transformers as Algorithms: Generalization and Implicit Model Selection
in In-context Learning [23.677503557659705]
In-context Learning (ICL) は、トランスフォーマーモデルが一連の例で動作し、オンザフライで推論を行うプロンプトの一種である。
我々は,このトランスモデルを学習アルゴリズムとして扱い,推論時別のターゲットアルゴリズムを実装するためのトレーニングを通じて専門化することができる。
変換器は適応学習アルゴリズムとして機能し、異なる仮説クラス間でモデル選択を行うことができることを示す。
論文 参考訳(メタデータ) (2023-01-17T18:31:12Z) - Transformers learn in-context by gradient descent [58.24152335931036]
自己回帰目標におけるトランスフォーマーの訓練は、勾配に基づくメタラーニングの定式化と密接に関連している。
トレーニングされたトランスフォーマーがメザ最適化器となる方法,すなわち,前方通過における勾配降下によるモデル学習方法を示す。
論文 参考訳(メタデータ) (2022-12-15T09:21:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。