Err
Err
Related papers
- Pre-training Generative Recommender with Multi-Identifier Item Tokenization [78.87007819266957]
We propose MTGRec to augment token sequence data for Generative Recommender pre-training.
Our approach involves two key innovations: multi-identifier item tokenization and curriculum recommender pre-training.
Extensive experiments on three public benchmark datasets demonstrate that MTGRec significantly outperforms both traditional and generative recommendation baselines.
arXiv Detail & Related papers (2025-04-06T08:03:03Z) - Does It Look Sequential? An Analysis of Datasets for Evaluation of Sequential Recommendations [0.8437187555622164]
Sequential recommender systems aim to use the order of interactions in a user's history to predict future interactions.
It is crucial to use datasets that exhibit a sequential structure to evaluate sequential recommenders properly.
We apply several methods based on the random shuffling of the user's sequence of interactions to assess the strength of sequential structure across 15 datasets.
arXiv Detail & Related papers (2024-08-21T21:40:07Z) - Multi-Level Sequence Denoising with Cross-Signal Contrastive Learning for Sequential Recommendation [13.355017204983973]
Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction sequences.
We propose a novel model named Multi-level Sequence Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation.
arXiv Detail & Related papers (2024-04-22T04:57:33Z) - Invariant representation learning for sequential recommendation [0.0]
Sequential recommendation involves automatically recommending the next item to users based on their historical item sequence.
We introduce a novel sequential recommendation framework named Irl4Rec.
This framework harnesses invariant learning and employs a new objective that factors in the relationship between spurious variables and adjustment variables during model training.
arXiv Detail & Related papers (2023-08-22T18:39:39Z) - Exogenous Data in Forecasting: FARM -- A New Measure for Relevance
Evaluation [62.997667081978825]
We introduce a new approach named FARM - Forward Relevance Aligned Metric.
Our forward method relies on an angular measure that compares changes in subsequent data points to align time-warped series.
As a first validation step, we present the application of our FARM approach to synthetic but representative signals.
arXiv Detail & Related papers (2023-04-21T15:22:33Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Enhancing Sequential Recommendation with Graph Contrastive Learning [64.05023449355036]
This paper proposes a novel sequential recommendation framework, namely Graph Contrastive Learning for Sequential Recommendation (GCL4SR)
GCL4SR employs a Weighted Item Transition Graph (WITG), built based on interaction sequences of all users, to provide global context information for each interaction and weaken the noise information in the sequence data.
Experiments on real-world datasets demonstrate that GCL4SR consistently outperforms state-of-the-art sequential recommendation methods.
arXiv Detail & Related papers (2022-05-30T03:53:31Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Sequential recommendation with metric models based on frequent sequences [0.688204255655161]
We propose to use frequent sequences to identify the most relevant part of the user history for the recommendation.
The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics.
arXiv Detail & Related papers (2020-08-12T22:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.