Sequential recommendation with metric models based on frequent sequences
- URL: http://arxiv.org/abs/2008.05587v1
- Date: Wed, 12 Aug 2020 22:08:04 GMT
- Title: Sequential recommendation with metric models based on frequent sequences
- Authors: Corentin Lonjarret, Roch Auburtin, C\'eline Robardet and Marc
Plantevit
- Abstract summary: We propose to use frequent sequences to identify the most relevant part of the user history for the recommendation.
The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics.
- Score: 0.688204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling user preferences (long-term history) and user dynamics (short-term
history) is of greatest importance to build efficient sequential recommender
systems. The challenge lies in the successful combination of the whole user's
history and his recent actions (sequential dynamics) to provide personalized
recommendations. Existing methods capture the sequential dynamics of a user
using fixed-order Markov chains (usually first order chains) regardless of the
user, which limits both the impact of the past of the user on the
recommendation and the ability to adapt its length to the user profile. In this
article, we propose to use frequent sequences to identify the most relevant
part of the user history for the recommendation. The most salient items are
then used in a unified metric model that embeds items based on user preferences
and sequential dynamics. Extensive experiments demonstrate that our method
outperforms state-of-the-art, especially on sparse datasets. We show that
considering sequences of varying lengths improves the recommendations and we
also emphasize that these sequences provide explanations on the recommendation.
Related papers
- Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
We introduce the Schr"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model.
We also propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition.
arXiv Detail & Related papers (2024-08-30T09:10:38Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - A Sequence-Aware Recommendation Method Based on Complex Networks [1.385805101975528]
We build a network model from data and then use it to predict the user's subsequent actions.
The proposed method is implemented and tested experimentally on a large dataset.
arXiv Detail & Related papers (2022-09-30T16:34:39Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - TEA: A Sequential Recommendation Framework via Temporally Evolving
Aggregations [12.626079984394766]
We propose a novel sequential recommendation framework based on dynamic user-item heterogeneous graphs.
We exploit the conditional random field to aggregate the heterogeneous graphs and user behaviors for probability estimation.
We provide scalable and flexible implementations of the proposed framework.
arXiv Detail & Related papers (2021-11-14T15:54:23Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
We propose the SAR model, which learns the sequential patterns and adjusts the sequence length of user-item interactions in a personalized manner.
In addition, we optimize a joint loss function to align the accuracy of the sequential recommendations with the expected cumulative rewards of the critic network.
Our experimental evaluation on four real-world datasets demonstrates the superiority of our proposed model over several baseline approaches.
arXiv Detail & Related papers (2021-07-31T13:56:46Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
We propose a novel long sequential recommendation model called Dynamic Memory-based Attention Network (DMAN)
It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users.
Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation.
arXiv Detail & Related papers (2021-02-18T11:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.