論文の概要: Reinforcing Thinking through Reasoning-Enhanced Reward Models
- arxiv url: http://arxiv.org/abs/2501.01457v1
- Date: Tue, 31 Dec 2024 04:50:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:12:40.101506
- Title: Reinforcing Thinking through Reasoning-Enhanced Reward Models
- Title(参考訳): 推論強化リワードモデルによる思考の強化
- Authors: Diji Yang, Linda Zeng, Kezhen Chen, Yi Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、推論時思考による複雑な多段階推論において大きな可能性を秘めている。
LLMは、知識境界に対する自己認識が限られているため、いつ思考をやめるかを決めるのに苦労する。
この研究は、LLM自身の推論プロセスを合成行動データに蒸留することで、これらの課題に対処する。
- 参考スコア(独自算出の注目度): 6.636512424910708
- License:
- Abstract: Large Language Models (LLMs) exhibit great potential in complex multi-step reasoning through inference-time thinking but still struggle with deciding when to stop thinking due to limited self-awareness about their knowledge boundaries. While human preference alignment has shown extraordinary opportunities, expensive labeling challenges adherence to scaling law. Language model self-critique, as an alternative to using human-labeled reasoning data, is questioned with its inherited biases. This work addresses these challenges by distilling the LLM's own reasoning processes into synthetic behavioral data, eliminating the need for manual labeling of intermediate steps. Building on this concept, we propose Distillation-Reinforcement-Reasoning (DRR), a three-step framework that leverages the LLM's inherent behaviors as external feedback by first generating behavioral data using the Reasoner (LLM) to reflect its reasoning capabilities, then training a lightweight discriminative reward model (DM) on behavioral data, and finally deploying the DM at inference time to assist the Reasoner's decision-making. Experiments on multiple benchmarks show that the DRR framework outperforms self-critique approaches without relying on additional complex data annotation. Benefiting from lightweight design, ease of replication, and adaptability, DRR is applicable to a wide range of LLM-centric tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、推論時思考による複雑な多段階推論において大きな可能性を秘めているが、知識境界に対する自己認識が限られているため、いつ思考を止めるべきか決めるのに苦慮している。
人間の嗜好の整合性は異常な機会を示してきたが、高価なラベル付けは法のスケーリングに固執する。
言語モデルによる自己批判は、人間のラベル付き推論データの代わりに、その遺伝バイアスによって疑問視される。
この研究は、LLM自身の推論プロセスを合成行動データに蒸留することでこれらの課題に対処し、中間ステップを手動でラベル付けする必要をなくした。
この概念に基づいて,3段階のフレームワークであるDistillation-Reinforcement-Reasoning(DRR)を提案する。このフレームワークは,まずはReasoner(LLM)を用いて行動データを生成し,次に,行動データに基づいて軽量識別報酬モデル(DM)を訓練し,最終的にDMを推論時に展開し,その意思決定を支援する。
複数のベンチマークの実験では、DRRフレームワークは、追加の複雑なデータアノテーションに頼ることなく、自己批判的なアプローチより優れていることが示されている。
軽量な設計、レプリケーションの容易さ、適応性により、DRRは幅広いLLM中心のタスクに適用できる。
関連論文リスト
- Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling [87.17041933863041]
本稿では,応答条件付きBradley-Terryモデルを提案する。
また、大規模言語モデルの直接ポリシー最適化(DPO)にRc-BTモデルを利用するRc-DPOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-02T14:50:25Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
ReARTeR(Retrieval-Augmented Reasoning)を提案する。
ReARTeRは、ポストトレーニングとテストタイムスケーリングを通じて、RAGシステムの推論能力を向上する。
マルチステップ推論ベンチマークの実験結果から,大幅な改善が示された。
論文 参考訳(メタデータ) (2025-01-14T05:56:26Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
本稿では,未ラベルデータを用いたRMトレーニングを強化する手法であるSemi-Supervised Reward Modeling (SSRM)を提案する。
SSRMは、追加のラベリングコストを発生させることなく、報酬モデルを大幅に改善することを示した。
全体として、SSRMは、人間が注釈付けした大量のデータへの依存を大幅に減らし、効果的な報酬モデルのトレーニングに要する全体的なコストと時間を削減する。
論文 参考訳(メタデータ) (2024-09-10T22:57:58Z) - Reasoning Aware Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling [9.44858963874474]
自己整合性は、複数の推論経路をサンプリングすることによって、大規模言語モデル(LLM)における幻覚を緩和する。
本稿では、サンプリング効率を高め、忠実性を推論する新しいフレームワークであるReasoning-Aware Self-Consistency (RASC)を紹介する。
論文 参考訳(メタデータ) (2024-08-30T05:14:59Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
マルチモーダリティ強化LLMに基づくエンドツーエンド意思決定モデルを提案する。
ペア化されたCoTと計画結果との推論・決定アライメントの制約を提案する。
提案する大規模言語プランナをRDA-Driverとして推論・決定アライメントする。
論文 参考訳(メタデータ) (2024-08-25T16:43:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
複素データ内の因子化属性とその相互関係を学習するための双方向重み付きグラフベースフレームワークを提案する。
具体的には、グラフの初期ノードとして要素を抽出する$beta$-VAEベースのモジュールを提案する。
これらの相補的加群を統合することで、我々は細粒度、実用性、教師なしの絡み合いをうまく達成できる。
論文 参考訳(メタデータ) (2024-07-26T15:32:21Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。