論文の概要: The Role of Deductive and Inductive Reasoning in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.02892v1
- Date: Thu, 3 Oct 2024 18:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:14:45.886496
- Title: The Role of Deductive and Inductive Reasoning in Large Language Models
- Title(参考訳): 大規模言語モデルにおける帰納的推論と帰納的推論の役割
- Authors: Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu, Jenq-Neng Hwang, Lei Li,
- Abstract要約: 大規模言語モデル(LLM)は人工知能、特に推論タスクにおいて大きな進歩を遂げている。
本稿では, 帰納的推論と帰納的推論を動的に統合することにより, LLM推論を強化するDID法を提案する。
以上の結果から,DIDはLLMにおける推論のための,より堅牢で認知に整合した枠組みを提供する可能性が示唆された。
- 参考スコア(独自算出の注目度): 35.43513487137371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have achieved substantial progress in artificial intelligence, particularly in reasoning tasks. However, their reliance on static prompt structures, coupled with limited dynamic reasoning capabilities, often constrains their adaptability to complex and evolving problem spaces. In this paper, we propose the Deductive and InDuctive(DID) method, which enhances LLM reasoning by dynamically integrating both deductive and inductive reasoning within the prompt construction process. Drawing inspiration from cognitive science, the DID approach mirrors human adaptive reasoning mechanisms, offering a flexible framework that allows the model to adjust its reasoning pathways based on task context and performance. We empirically validate the efficacy of DID on established datasets such as AIW and MR-GSM8K, as well as on our custom dataset, Holiday Puzzle, which presents tasks about different holiday date calculating challenges. By leveraging DID's hybrid prompt strategy, we demonstrate significant improvements in both solution accuracy and reasoning quality, achieved without imposing substantial computational overhead. Our findings suggest that DID provides a more robust and cognitively aligned framework for reasoning in LLMs, contributing to the development of advanced LLM-driven problem-solving strategies informed by cognitive science models.
- Abstract(参考訳): 大規模言語モデル(LLM)は人工知能、特に推論タスクにおいて大きな進歩を遂げている。
しかしながら、静的なプロンプト構造への依存は、動的推論能力の制限と相まって、複雑で進化する問題空間への適応性を制限していることが多い。
本稿では, インダクティブ・インダクティブ(DID)法を提案する。この手法は, インダクティブ・インダクティブ・推論とインダクティブ・推論の両方をインダクティブ・コンストラクション・プロセスに動的に統合することにより, LLM推論を強化する。
認知科学からインスピレーションを得たDIDアプローチは、人間の適応的推論メカニズムを反映し、モデルがタスクコンテキストとパフォーマンスに基づいて推論経路を調整するフレキシブルなフレームワークを提供する。
我々はAIWやMR-GSM8Kのような確立したデータセットや、ホリデー・パズルなどのカスタムデータセットにおけるDIDの有効性を実証的に検証した。
DIDのハイブリッド・プロンプト・ストラテジーを活用することで,計算オーバーヘッドを伴わずに実現した解の精度と推論品質の両面において,大幅な改善が示された。
以上の結果から,DID は LLM における推論のためのより堅牢で認知に整合した枠組みを提供し,認知科学モデルによる高度な LLM 駆動問題解決戦略の開発に寄与することが示唆された。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Investigating the Robustness of Deductive Reasoning with Large Language Models [7.494617747914778]
大規模言語モデル(LLM)は多くの推論に基づく自然言語処理(NLP)タスクにおいて印象的な結果が得られることが示されている。
LLMが、非公式および自己形式化の両方の手法で、どの程度論理的推論タスクに頑健であるかは、まだ不明である。
論文 参考訳(メタデータ) (2025-02-04T17:16:51Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
我々はフォレスト・オブ・サート(FoT)と呼ばれる新しい推論フレームワークを提案する。
FoTは複数の推論木を統合し、複雑な論理問題を解くために集合的な意思決定を活用する。
本稿では,リアルタイムの誤り訂正を可能にする動的自己補正戦略と,コンセンサス誘導による意思決定戦略を導入する。
論文 参考訳(メタデータ) (2024-12-12T09:01:18Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
CoT(Chain-of-Thought)パラダイムは,大規模言語モデル(LLM)の推論能力向上のための重要なアプローチとして登場した。
中間的推論ステップを生成する前に戦略的知識を統合することでLCM性能を向上するための textbfStrategic Chain-of-Thought (SCoT) を提案する。
SCoTは1つのプロンプトの中で2段階のアプローチを採用し、まず効果的な問題解決戦略を導き、次に高品質なCoTパスと最終回答の生成を導くのに使用される。
論文 参考訳(メタデータ) (2024-09-05T06:28:05Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
マルチモーダリティ強化LLMに基づくエンドツーエンド意思決定モデルを提案する。
ペア化されたCoTと計画結果との推論・決定アライメントの制約を提案する。
提案する大規模言語プランナをRDA-Driverとして推論・決定アライメントする。
論文 参考訳(メタデータ) (2024-08-25T16:43:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。