ORACLE: A Real-Time, Hierarchical, Deep-Learning Photometric Classifier for the LSST
- URL: http://arxiv.org/abs/2501.01496v1
- Date: Thu, 02 Jan 2025 19:00:05 GMT
- Title: ORACLE: A Real-Time, Hierarchical, Deep-Learning Photometric Classifier for the LSST
- Authors: Ved G. Shah, Alex Gagliano, Konstantin Malanchev, Gautham Narayan, The LSST Dark Energy Science Collaboration,
- Abstract summary: We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena.
ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs)
Training on $sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations.
- Score: 0.3276793654637396
- License:
- Abstract: We present ORACLE, the first hierarchical deep-learning model for real-time, context-aware classification of transient and variable astrophysical phenomena. ORACLE is a recurrent neural network with Gated Recurrent Units (GRUs), and has been trained using a custom hierarchical cross-entropy loss function to provide high-confidence classifications along an observationally-driven taxonomy with as little as a single photometric observation. Contextual information for each object, including host galaxy photometric redshift, offset, ellipticity and brightness, is concatenated to the light curve embedding and used to make a final prediction. Training on $\sim$0.5M events from the Extended LSST Astronomical Time-Series Classification Challenge, we achieve a top-level (Transient vs Variable) macro-averaged precision of 0.96 using only 1 day of photometric observations after the first detection in addition to contextual information, for each event; this increases to $>$0.99 once 64 days of the light curve has been obtained, and 0.83 at 1024 days after first detection for 19-way classification (including supernova sub-types, active galactic nuclei, variable stars, microlensing events, and kilonovae). We also compare ORACLE with other state-of-the-art classifiers and report comparable performance for the 19-way classification task, in addition to delivering accurate top-level classifications much earlier. The code and model weights used in this work are publicly available at our associated GitHub repository (https://github.com/uiucsn/ELAsTiCC-Classification).
Related papers
- Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning [51.177789437682954]
Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones.
Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown.
We propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration.
arXiv Detail & Related papers (2025-02-11T13:57:30Z) - Identifying Light-curve Signals with a Deep Learning Based Object
Detection Algorithm. II. A General Light Curve Classification Framework [0.0]
We present a novel deep learning framework for classifying light curves using a weakly supervised object detection model.
Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data.
We train our model on datasets obtained from both space-based and ground-based multi-band observations of variable stars and transients.
arXiv Detail & Related papers (2023-11-14T11:08:34Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Real-time detection of anomalies in large-scale transient surveys [0.0]
We present two novel methods of automatically detecting anomalous transient light curves in real-time.
Both methods are based on the simple idea that if the light curves from a known population of transients can be accurately modelled, any deviations from model predictions are likely anomalies.
arXiv Detail & Related papers (2021-10-29T18:29:25Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Paying Attention to Astronomical Transients: Introducing the Time-series
Transformer for Photometric Classification [6.586394734694152]
We develop a new transformer architecture, first proposed for natural language processing.
We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge.
We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge.
arXiv Detail & Related papers (2021-05-13T10:16:13Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - A Deep Learning Approach for Active Anomaly Detection of Extragalactic
Transients [1.7152709285783647]
We present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events.
We rank 1,129,184 events based on an anomaly score estimated using an isolation forest.
Our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow up studies.
arXiv Detail & Related papers (2021-03-22T18:02:19Z) - MANTRA: A Machine Learning reference lightcurve dataset for astronomical
transient event recognition [2.208166456405677]
We provide public access to a dataset of 4869 transient and 71207 non-transient object lightcurves built from the Catalina Real Time Transient Survey.
Some of the classes included in the dataset are: supernovae, cataclysmic variables, active galactic nuclei, high proper motion stars, blazars and flares.
We assess quantitative performance in two classification tasks: binary (transient/non-transient) and eight-class classification.
arXiv Detail & Related papers (2020-06-23T17:06:49Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.