Adaptive Meta-learning-based Adversarial Training for Robust Automatic Modulation Classification
- URL: http://arxiv.org/abs/2501.01620v1
- Date: Fri, 03 Jan 2025 03:28:33 GMT
- Title: Adaptive Meta-learning-based Adversarial Training for Robust Automatic Modulation Classification
- Authors: Amirmohammad Bamdad, Ali Owfi, Fatemeh Afghah,
- Abstract summary: We propose a meta-learning-based adversarial training framework for automatic modulation classification (AMC) models.
Our results demonstrate that this training framework provides superior robustness and accuracy with much less online training time than conventional adversarial training of AMC models.
- Score: 4.754812565644714
- License:
- Abstract: DL-based automatic modulation classification (AMC) models are highly susceptible to adversarial attacks, where even minimal input perturbations can cause severe misclassifications. While adversarially training an AMC model based on an adversarial attack significantly increases its robustness against that attack, the AMC model will still be defenseless against other adversarial attacks. The theoretically infinite possibilities for adversarial perturbations mean that an AMC model will inevitably encounter new unseen adversarial attacks if it is ever to be deployed to a real-world communication system. Moreover, the computational limitations and challenges of obtaining new data in real-time will not allow a full training process for the AMC model to adapt to the new attack when it is online. To this end, we propose a meta-learning-based adversarial training framework for AMC models that substantially enhances robustness against unseen adversarial attacks and enables fast adaptation to these attacks using just a few new training samples, if any are available. Our results demonstrate that this training framework provides superior robustness and accuracy with much less online training time than conventional adversarial training of AMC models, making it highly efficient for real-world deployment.
Related papers
- Module-wise Adaptive Adversarial Training for End-to-end Autonomous Driving [33.90341803416033]
We present Module-wise Adaptive Adrial Training (MA2T) for end-to-end autonomous driving models.
We introduce Module-wise Noise Injection, which injects noise before the input of different modules, targeting training models with the guidance of overall objectives.
We also introduce Dynamic Weight Accumulation Adaptation, which incorporates accumulated weight changes to adaptively learn and adjust the loss weights of each module.
arXiv Detail & Related papers (2024-09-11T15:00:18Z) - Data-Driven Subsampling in the Presence of an Adversarial Actor [9.718390110364789]
Deep learning based automatic modulation classification (AMC) has received significant attention owing to its potential applications in both military and civilian use cases.
Data-driven subsampling techniques have been utilized to overcome the challenges associated with computational complexity and training time for AMC.
In this paper, we investigate the effects of an adversarial attack on an AMC system that employs deep learning models both for AMC and for subsampling.
arXiv Detail & Related papers (2024-01-07T14:02:22Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
We propose a double defense mechanism to detect and mitigate adversarial attacks in I-IoT environments.
We first detect if there is an adversarial attack on a given sample using novelty detection algorithms.
If there is an attack, adversarial retraining provides a more robust model, while we apply standard training for regular samples.
arXiv Detail & Related papers (2023-01-23T22:10:40Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Meta Adversarial Training [11.731001328350985]
Adrial training is the most effective defense against image-dependent adversarial attacks.
tailoring adversarial training to universal perturbations is computationally expensive.
We present results for universal patch and universal perturbation attacks on image classification and traffic-light detection.
arXiv Detail & Related papers (2021-01-27T14:36:23Z) - Self-Progressing Robust Training [146.8337017922058]
Current robust training methods such as adversarial training explicitly uses an "attack" to generate adversarial examples.
We propose a new framework called SPROUT, self-progressing robust training.
Our results shed new light on scalable, effective and attack-independent robust training methods.
arXiv Detail & Related papers (2020-12-22T00:45:24Z) - Efficient Adversarial Training with Transferable Adversarial Examples [58.62766224452761]
We show that there is high transferability between models from neighboring epochs in the same training process.
We propose a novel method, Adversarial Training with Transferable Adversarial Examples (ATTA) that can enhance the robustness of trained models.
arXiv Detail & Related papers (2019-12-27T03:05:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.