論文の概要: Catch Causal Signals from Edges for Label Imbalance in Graph Classification
- arxiv url: http://arxiv.org/abs/2501.01707v2
- Date: Tue, 07 Jan 2025 14:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 12:28:47.830199
- Title: Catch Causal Signals from Edges for Label Imbalance in Graph Classification
- Title(参考訳): グラフ分類におけるラベル不均衡のためのエッジからのキャッチ因果信号
- Authors: Fengrui Zhang, Yujia Yin, Hongzong Li, Yifan Chen, Tianyi Qu,
- Abstract要約: エッジ情報を利用して、元のグラフから因果部分グラフをアンタングルする。
我々の設計は、ラベルの不均衡問題を伴うグラフ分類タスクの性能改善につながる。
我々は,実単語データセット PTC,Tox21,ogbg-molhiv に対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 2.0316763723596063
- License:
- Abstract: Despite significant advancements in causal research on graphs and its application to cracking label imbalance, the role of edge features in detecting the causal effects within graphs has been largely overlooked, leaving existing methods with untapped potential for further performance gains. In this paper, we enhance the causal attention mechanism through effectively leveraging edge information to disentangle the causal subgraph from the original graph, as well as further utilizing edge features to reshape graph representations. Capturing more comprehensive causal signals, our design leads to improved performance on graph classification tasks with label imbalance issues. We evaluate our approach on real-word datasets PTC, Tox21, and ogbg-molhiv, observing improvements over baselines. Overall, we highlight the importance of edge features in graph causal detection and provide a promising direction for addressing label imbalance challenges in graph-level tasks. The model implementation details and the codes are available on https://github.com/fengrui-z/ECAL
- Abstract(参考訳): グラフの因果研究の進歩とラベルの不均衡の解読への応用にもかかわらず、グラフ内の因果効果の検出におけるエッジ特徴の役割は概ね見過ごされ、既存の手法にはさらなる性能向上の可能性が残されている。
本稿では、エッジ情報を有効活用して、元のグラフから因果部分グラフを切り離すとともに、エッジ特徴を利用してグラフ表現を再構築することで、因果注意機構を強化する。
より包括的な因果信号を取得することで,グラフ分類タスクの性能が向上し,ラベルの不均衡が問題となる。
PTC, Tox21, ogbg-molhiv を用いた実単語データセットに対する提案手法の評価を行い, ベースラインの改善を観察した。
全体として、グラフ因果検出におけるエッジ機能の重要性を強調し、グラフレベルのタスクにおけるラベルの不均衡問題に対処するための有望な方向性を提供する。
モデル実装の詳細とコードはhttps://github.com/fengrui-z/ECALで公開されている。
関連論文リスト
- Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
本稿では,グラフレベルの異常検出のための新しい手法Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR)を提案する。
このモデルは、あるグラフのモチーフと、識別(カテゴリ)情報を含むコアサブグラフと、別のグラフのコンテキストサブグラフを組み合わせて、生の反事実グラフを生成する。
MotifCARは高品質な反ファクトグラフを生成することができる。
論文 参考訳(メタデータ) (2024-07-18T08:04:57Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
本稿では,グラフアテンションネットワークのための汎用正規化フレームワークであるCARを紹介する。
メソッド名は、グラフ接続に対するアクティブ介入の因果効果とアテンションメカニズムを一致させる。
ソーシャル・メディア・ネットワーク規模のグラフでは、CAR誘導グラフ再構成アプローチにより、グラフの畳み込み手法のスケーラビリティとグラフの注意力の向上を両立させることができる。
論文 参考訳(メタデータ) (2022-10-20T01:29:10Z) - Features Based Adaptive Augmentation for Graph Contrastive Learning [0.0]
自己監督学習は、グラフ表現学習における高価なアノテーションの必要性を排除することを目的としている。
機能に基づく適応拡張(FebAA)アプローチを導入し、潜在的に影響力のある機能を特定し保存する。
8つのグラフ表現学習のベンチマークデータセットにおいて,GRACEとBGRLの精度を向上させることに成功した。
論文 参考訳(メタデータ) (2022-07-05T03:41:20Z) - How to Find Your Friendly Neighborhood: Graph Attention Design with
Self-Supervision [16.86132592140062]
ノイズグラフに対する自己教師付きグラフアテンションネットワーク(SuperGAT)を提案する。
我々は、エッジを予測するために、自己教師型タスクと互換性のある2つの注意形式を利用する。
エッジを符号化することで、SuperGATは、リンクされた隣人を識別する際に、より表現力のある注意を学習する。
論文 参考訳(メタデータ) (2022-04-11T05:45:09Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
グラフニューラルネットワーク(GNN)はノードレベルのグラフ表現学習タスクでグラフ構造化データを扱うのに十分成熟していることが証明されている。
本稿では,グラフ構造に適応する階層型グラフレベルの表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-13T06:22:24Z) - Graph Information Bottleneck for Subgraph Recognition [103.37499715761784]
本稿では,深層グラフ学習における部分グラフ認識問題に対するグラフ情報ブートネック(GIB)の枠組みを提案する。
この枠組みの下では、最大情報でありながら圧縮的な部分グラフ(IB-subgraph)を認識できる。
IB-サブグラフの特性を3つのアプリケーションシナリオで評価する。
論文 参考訳(メタデータ) (2020-10-12T09:32:20Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。