論文の概要: Features Based Adaptive Augmentation for Graph Contrastive Learning
- arxiv url: http://arxiv.org/abs/2207.01792v1
- Date: Tue, 5 Jul 2022 03:41:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-07 03:41:42.794077
- Title: Features Based Adaptive Augmentation for Graph Contrastive Learning
- Title(参考訳): グラフコントラスト学習のための特徴量に基づく適応拡張
- Authors: Adnan Ali (1), Jinlong Li (2) ((1) University of Science and
Technology of China, (2) University of Science and Technology of China)
- Abstract要約: 自己監督学習は、グラフ表現学習における高価なアノテーションの必要性を排除することを目的としている。
機能に基づく適応拡張(FebAA)アプローチを導入し、潜在的に影響力のある機能を特定し保存する。
8つのグラフ表現学習のベンチマークデータセットにおいて,GRACEとBGRLの精度を向上させることに成功した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-Supervised learning aims to eliminate the need for expensive annotation
in graph representation learning, where graph contrastive learning (GCL) is
trained with the self-supervision signals containing data-data pairs. These
data-data pairs are generated with augmentation employing stochastic functions
on the original graph. We argue that some features can be more critical than
others depending on the downstream task, and applying stochastic function
uniformly, will vandalize the influential features, leading to diminished
accuracy. To fix this issue, we introduce a Feature Based Adaptive Augmentation
(FebAA) approach, which identifies and preserves potentially influential
features and corrupts the remaining ones. We implement FebAA as plug and play
layer and use it with state-of-the-art Deep Graph Contrastive Learning (GRACE)
and Bootstrapped Graph Latents (BGRL). We successfully improved the accuracy of
GRACE and BGRL on eight graph representation learning's benchmark datasets.
- Abstract(参考訳): 自己監督学習はグラフ表現学習における高価なアノテーションの必要性を排除することを目的としており、グラフコントラスト学習(GCL)はデータ-データペアを含む自己超越信号で訓練される。
これらのデータ-データペアは、元のグラフ上の確率関数を用いた拡張によって生成される。
いくつかの特徴は下流のタスクによって他よりも重要であり、確率関数を一様に適用することで影響のある特徴を破壊し、精度を低下させる。
この問題を修正するために,我々は,潜在的に影響力のある機能を識別し保存し,残りの機能を腐敗させる機能ベース適応拡張(febaa)アプローチを導入する。
febaaをプラグアンドプレイ層として実装し,最先端のディープグラフコントラスト学習(grace)とブートストラップグラフラテント(bgrl)で使用する。
8つのグラフ表現学習のベンチマークデータセットにおけるGRACEとBGRLの精度向上に成功した。
関連論文リスト
- RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
我々は、RAGraph(General Retrieval-Augmented Graph Learning)と呼ばれる新しいフレームワークを紹介する。
RAGraphは、一般的なグラフ基盤モデルに外部グラフデータを導入し、目に見えないシナリオにおけるモデルの一般化を改善する。
推論中、RAGraphは下流タスクにおける重要な類似性に基づいて、似たようなおもちゃのグラフを順応的に検索する。
論文 参考訳(メタデータ) (2024-10-31T12:05:21Z) - ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning [34.23920789327245]
本稿では,グラフのキー部分を保存するために,コントラスト的な拡張過程を導出するENGAGEを提案する。
また、構造情報と特徴情報を摂動するグラフ上に2つのデータ拡張スキームを設計する。
論文 参考訳(メタデータ) (2023-07-03T14:33:14Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Hybrid Augmented Automated Graph Contrastive Learning [3.785553471764994]
本稿では,Hybrid Augmented Automated Graph Contrastive Learning (HAGCL) というフレームワークを提案する。
HAGCLは機能レベルの学習可能なビュージェネレータとエッジレベルの学習可能なビュージェネレータで構成される。
特徴とトポロジの観点から最も意味のある構造を学ぶことを保証します。
論文 参考訳(メタデータ) (2023-03-24T03:26:20Z) - COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive
Learning [64.78221638149276]
グラフ拡張によって得られるノードの埋め込みは、非常に偏りが強いことを示す。
入力空間におけるグラフの増大を調査する代わりに,隠れた特徴の増大を提案する。
COSTAによる機能拡張は,グラフ拡張に基づくモデルに比べて,同等/ベターな結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-09T18:46:38Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Adversarial Graph Contrastive Learning with Information Regularization [51.14695794459399]
コントラスト学習はグラフ表現学習において有効な方法である。
グラフ上のデータ拡張は、はるかに直感的ではなく、高品質のコントラスト的なサンプルを提供するのがずっと難しい。
逆グラフ比較学習(Adversarial Graph Contrastive Learning, ARIEL)を提案する。
さまざまな実世界のデータセット上でのノード分類タスクにおいて、現在のグラフのコントラスト学習方法よりも一貫して優れています。
論文 参考訳(メタデータ) (2022-02-14T05:54:48Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。