論文の概要: Augmentation Matters: A Mix-Paste Method for X-Ray Prohibited Item Detection under Noisy Annotations
- arxiv url: http://arxiv.org/abs/2501.01733v1
- Date: Fri, 03 Jan 2025 09:51:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:12:20.041712
- Title: Augmentation Matters: A Mix-Paste Method for X-Ray Prohibited Item Detection under Noisy Annotations
- Title(参考訳): Augmentation Matters:Mix-Paste Method for X-ray Prohibited Item Detection under Noisy Annotation (特集:一般)
- Authors: Ruikang Chen, Yan Yan, Jing-Hao Xue, Yang Lu, Hanzi Wang,
- Abstract要約: 公共の安全のためには、自動X線禁止アイテム検出が不可欠である。
既存のディープラーニングベースの手法はすべて、X線画像のトレーニングのアノテーションが正しいことを前提としている。
ラベル対応混合パッチペースト増量法(Mix-Paste)を提案する。
我々は,ノイズの多いアノテーションの下で,X線データセット上での手法の優位性を示す。
- 参考スコア(独自算出の注目度): 52.065764858163476
- License:
- Abstract: Automatic X-ray prohibited item detection is vital for public safety. Existing deep learning-based methods all assume that the annotations of training X-ray images are correct. However, obtaining correct annotations is extremely hard if not impossible for large-scale X-ray images, where item overlapping is ubiquitous.As a result, X-ray images are easily contaminated with noisy annotations, leading to performance deterioration of existing methods.In this paper, we address the challenging problem of training a robust prohibited item detector under noisy annotations (including both category noise and bounding box noise) from a novel perspective of data augmentation, and propose an effective label-aware mixed patch paste augmentation method (Mix-Paste). Specifically, for each item patch, we mix several item patches with the same category label from different images and replace the original patch in the image with the mixed patch. In this way, the probability of containing the correct prohibited item within the generated image is increased. Meanwhile, the mixing process mimics item overlapping, enabling the model to learn the characteristics of X-ray images. Moreover, we design an item-based large-loss suppression (LLS) strategy to suppress the large losses corresponding to potentially positive predictions of additional items due to the mixing operation. We show the superiority of our method on X-ray datasets under noisy annotations. In addition, we evaluate our method on the noisy MS-COCO dataset to showcase its generalization ability. These results clearly indicate the great potential of data augmentation to handle noise annotations. The source code is released at https://github.com/wscds/Mix-Paste.
- Abstract(参考訳): 公共の安全のためには、自動X線禁止アイテム検出が不可欠である。
既存のディープラーニングベースの手法はすべて、X線画像のトレーニングのアノテーションが正しいことを前提としている。
しかし, 項目重複がユビキタスである大規模X線画像では, 正確なアノテーションを得るのは非常に困難である。その結果, X線画像は, ノイズの多いアノテーションで容易に汚染され, 既存の手法の性能劣化につながる。
具体的には、各アイテムパッチに対して、異なるイメージから同じカテゴリラベルに複数のアイテムパッチを混ぜ、元のパッチを混合パッチに置き換えます。
これにより、生成された画像内に正しい禁止項目を含む確率が増大する。
一方、混合プロセスはアイテムオーバーラップを模倣し、モデルがX線画像の特徴を学習できるようにする。
さらに,混合操作による付加項目の潜在的肯定的な予測に対応する大損失を抑えるために,アイテムベース大損失抑制(LLS)戦略を設計する。
我々は,ノイズの多いアノテーションの下で,X線データセット上での手法の優位性を示す。
また,雑音の多いMS-COCOデータセット上での手法の評価を行い,その一般化能力を示す。
これらの結果は、ノイズアノテーションを扱うためのデータ拡張の大きな可能性を示している。
ソースコードはhttps://github.com/wscds/Mix-Paste.comで公開されている。
関連論文リスト
- BGM: Background Mixup for X-ray Prohibited Items Detection [75.58709178012502]
本稿では,X線画像固有の特徴を活かして,禁止項目検出に適した新しいデータ拡張手法を提案する。
1) X線透過画像: 反射光画像とは異なり、透過X線画素は、撮像経路に沿った複数の材料からの合成情報を表す。
本稿では,セキュリティスクリーニングにおけるアイテム検出の禁止を目的とした,単純かつ効果的なX線画像強調手法であるバックグラウンドミキサップ(BGM)を提案する。
論文 参考訳(メタデータ) (2024-11-30T12:26:55Z) - Learning Camouflaged Object Detection from Noisy Pseudo Label [60.9005578956798]
本稿では,まず,弱い半教師付きカモフラージュオブジェクト検出(COD)法を提案する。
予算効率が高く高精度なカモフラージュされたオブジェクトセグメンテーションを目標とし、完全にラベル付けされた画像が極めて限られている。
本稿では,早期の学習段階において,モデルが正しい画素の学習を容易にするノイズ補正損失を提案する。
完全ラベル付きデータの20%しか使用しない場合,本手法は最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T04:53:51Z) - Learning to Segment from Noisy Annotations: A Spatial Correction
Approach [12.604673584405385]
ノイズラベルはディープニューラルネットワーク(DNN)の性能に大きく影響する
空間相関とバイアスの両方をエンコードするセグメンテーションノイズアノテーションのための新しいマルコフモデルを提案する。
提案手法は, 合成および実世界のノイズアノテーションにおいて, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-21T00:27:40Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - Over-sampling De-occlusion Attention Network for Prohibited Items
Detection in Noisy X-ray Images [35.35752470993847]
セキュリティ検査は、スーツケースの個人持ち物のX線スキャンです。
一般的な画像認識データセットを通じてトレーニングされた従来のCNNベースのモデルは、このシナリオで十分なパフォーマンスを達成できない。
新規な脱閉塞注意モジュールと新しいオーバーサンプリングトレーニング戦略からなるオーバーサンプリング脱閉塞注意ネットワーク(DOAM-O)を提案する。
論文 参考訳(メタデータ) (2021-03-01T07:17:37Z) - Data-driven Meta-set Based Fine-Grained Visual Classification [61.083706396575295]
本稿では, ノイズの多いWeb画像に対して, 微粒化認識のためのデータ駆動型メタセットベースアプローチを提案する。
具体的には、少量のクリーンなメタセットでガイドされ、メタラーニング方式で選択ネットを訓練し、分布内および分布外ノイズ画像の識別を行う。
論文 参考訳(メタデータ) (2020-08-06T03:04:16Z) - Towards Noise-resistant Object Detection with Noisy Annotations [119.63458519946691]
ディープオブジェクト検出器の訓練には、正確なオブジェクトラベルとバウンディングボックス座標を持つ、相当量の人間の注釈画像が必要である。
ノイズの多いアノテーションはずっと簡単にアクセスできますが、学習には有害かもしれません。
ノイズにはラベルノイズとバウンディングボックスノイズが混在している。
論文 参考訳(メタデータ) (2020-03-03T01:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。