Nonparametric estimation of a factorizable density using diffusion models
- URL: http://arxiv.org/abs/2501.01783v1
- Date: Fri, 03 Jan 2025 12:32:19 GMT
- Title: Nonparametric estimation of a factorizable density using diffusion models
- Authors: Hyeok Kyu Kwon, Dongha Kim, Ilsang Ohn, Minwoo Chae,
- Abstract summary: In this paper, we study diffusion models as an implicit approach to nonparametric density estimation.
We show that an implicit density estimator constructed from diffusion models adapts to the factorization structure and achieves the minimax optimal rate.
In constructing the estimator, we design a sparse weight-sharing neural network architecture.
- Score: 3.5773675235837974
- License:
- Abstract: In recent years, diffusion models, and more generally score-based deep generative models, have achieved remarkable success in various applications, including image and audio generation. In this paper, we view diffusion models as an implicit approach to nonparametric density estimation and study them within a statistical framework to analyze their surprising performance. A key challenge in high-dimensional statistical inference is leveraging low-dimensional structures inherent in the data to mitigate the curse of dimensionality. We assume that the underlying density exhibits a low-dimensional structure by factorizing into low-dimensional components, a property common in examples such as Bayesian networks and Markov random fields. Under suitable assumptions, we demonstrate that an implicit density estimator constructed from diffusion models adapts to the factorization structure and achieves the minimax optimal rate with respect to the total variation distance. In constructing the estimator, we design a sparse weight-sharing neural network architecture, where sparsity and weight-sharing are key features of practical architectures such as convolutional neural networks and recurrent neural networks.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion Models [6.76974373198208]
We find that the dependency of the error incurred within each denoising step on the ambient dimension $d$ is in general unavoidable.
This represents the first theoretical demonstration that the DDPM sampler can adapt to unknown low-dimensional structures in the target distribution.
arXiv Detail & Related papers (2024-05-23T17:59:10Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
Learning generative probabilistic models is a core problem in machine learning.
This paper proposes a joint dimensionality reduction and non-parametric density estimation framework.
We demonstrate that the proposed model achieves very promising results on regression tasks, sampling, and anomaly detection.
arXiv Detail & Related papers (2021-06-20T00:38:56Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
We investigate a likelihood approach to nonparametric estimation of a singular distribution using deep generative models.
We prove that a novel and effective solution exists by perturbing the data with an instance noise.
We also characterize the class of distributions that can be efficiently estimated via deep generative models.
arXiv Detail & Related papers (2021-05-09T23:13:58Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Learning Generative Models using Denoising Density Estimators [29.068491722778827]
We introduce a new generative model based on denoising density estimators (DDEs)
Our main contribution is a novel technique to obtain generative models by minimizing the KL-divergence directly.
Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.
arXiv Detail & Related papers (2020-01-08T20:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.