Universal Online Temporal Calibration for Optimization-based Visual-Inertial Navigation Systems
- URL: http://arxiv.org/abs/2501.01788v1
- Date: Fri, 03 Jan 2025 12:41:25 GMT
- Title: Universal Online Temporal Calibration for Optimization-based Visual-Inertial Navigation Systems
- Authors: Yunfei Fan, Tianyu Zhao, Linan Guo, Chen Chen, Xin Wang, Fengyi Zhou,
- Abstract summary: We propose a universal online temporal calibration strategy for optimization-based visual-inertial navigation systems.
We use the time offset td as a state parameter in the optimization residual model to align the IMU state to the corresponding image timestamp.
Our approach provides more accurate time offset estimation and faster convergence, particularly in the presence of noisy sensor data.
- Score: 13.416013522770905
- License:
- Abstract: 6-Degree of Freedom (6DoF) motion estimation with a combination of visual and inertial sensors is a growing area with numerous real-world applications. However, precise calibration of the time offset between these two sensor types is a prerequisite for accurate and robust tracking. To address this, we propose a universal online temporal calibration strategy for optimization-based visual-inertial navigation systems. Technically, we incorporate the time offset td as a state parameter in the optimization residual model to align the IMU state to the corresponding image timestamp using td, angular velocity and translational velocity. This allows the temporal misalignment td to be optimized alongside other tracking states during the process. As our method only modifies the structure of the residual model, it can be applied to various optimization-based frameworks with different tracking frontends. We evaluate our calibration method with both EuRoC and simulation data and extensive experiments demonstrate that our approach provides more accurate time offset estimation and faster convergence, particularly in the presence of noisy sensor data.
Related papers
- SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - Track Everything Everywhere Fast and Robustly [46.362962852140015]
We propose a novel test-time optimization approach for efficiently tracking any pixel in a video.
We introduce a novel invertible deformation network, CaDeX++, which factorizes the function representation into a local spatial-temporal feature grid.
Our experiments demonstrate a substantial improvement in training speed (more than textbf10 times faster), robustness, and accuracy in tracking over the SoTA optimization-based method OmniMotion.
arXiv Detail & Related papers (2024-03-26T17:58:22Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms.
These functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor.
In this study, we provide two novel solutions to estimate these calibration parameters.
arXiv Detail & Related papers (2024-03-01T20:56:14Z) - Towards Real-World Visual Tracking with Temporal Contexts [64.7981374129495]
We propose a two-level framework (TCTrack) that can exploit temporal contexts efficiently.
Based on it, we propose a stronger version for real-world visual tracking, i.e., TCTrack++.
For feature extraction, we propose an attention-based temporally adaptive convolution to enhance the spatial features.
For similarity map refinement, we introduce an adaptive temporal transformer to encode the temporal knowledge efficiently.
arXiv Detail & Related papers (2023-08-20T17:59:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Globally Optimal Event-Based Divergence Estimation for Ventral Landing [55.29096494880328]
Event sensing is a major component in bio-inspired flight guidance and control systems.
We explore the usage of event cameras for predicting time-to-contact with the surface during ventral landing.
This is achieved by estimating divergence (inverse TTC), which is the rate of radial optic flow, from the event stream generated during landing.
Our core contributions are a novel contrast maximisation formulation for event-based divergence estimation, and a branch-and-bound algorithm to exactly maximise contrast and find the optimal divergence value.
arXiv Detail & Related papers (2022-09-27T06:00:52Z) - DICP: Doppler Iterative Closest Point Algorithm [5.934931737701265]
We present a novel algorithm for point cloud registration for range sensors capable of measuring per-return instantaneous radial velocity: Doppler ICP.
We propose a new Doppler velocity objective function that exploits the compatibility of each point's Doppler measurement and the sensor's current motion estimate.
Our results show a significant performance improvement in terms of the registration accuracy with the added benefit of faster convergence guided by the Doppler velocity gradients.
arXiv Detail & Related papers (2022-01-28T05:51:07Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry [19.955414423860788]
This paper presents an online method for bootstrapping the optimization-based monocular visual-inertial odometry (VIO)
The method can online calibrate the relative transformation (spatial) and time offsets (temporal) among camera and IMU, as well as estimate the initial values of metric scale, velocity, gravity, gyroscope bias, and accelerometer bias.
Experimental results on public datasets show that the initial values and the parameters, as well as the sensor poses, can be accurately estimated by the proposed method.
arXiv Detail & Related papers (2020-04-12T03:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.