Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry
- URL: http://arxiv.org/abs/2004.05534v1
- Date: Sun, 12 Apr 2020 03:13:08 GMT
- Title: Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry
- Authors: Weibo Huang, Hong Liu, Weiwei Wan
- Abstract summary: This paper presents an online method for bootstrapping the optimization-based monocular visual-inertial odometry (VIO)
The method can online calibrate the relative transformation (spatial) and time offsets (temporal) among camera and IMU, as well as estimate the initial values of metric scale, velocity, gravity, gyroscope bias, and accelerometer bias.
Experimental results on public datasets show that the initial values and the parameters, as well as the sensor poses, can be accurately estimated by the proposed method.
- Score: 19.955414423860788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an online initialization method for bootstrapping the
optimization-based monocular visual-inertial odometry (VIO). The method can
online calibrate the relative transformation (spatial) and time offsets
(temporal) among camera and IMU, as well as estimate the initial values of
metric scale, velocity, gravity, gyroscope bias, and accelerometer bias during
the initialization stage. To compensate for the impact of time offset, our
method includes two short-term motion interpolation algorithms for the camera
and IMU pose estimation. Besides, it includes a three-step process to
incrementally estimate the parameters from coarse to fine. First, the extrinsic
rotation, gyroscope bias, and time offset are estimated by minimizing the
rotation difference between the camera and IMU. Second, the metric scale,
gravity, and extrinsic translation are approximately estimated by using the
compensated camera poses and ignoring the accelerometer bias. Third, these
values are refined by taking into account the accelerometer bias and the
gravitational magnitude. For further optimizing the system states, a nonlinear
optimization algorithm, which considers the time offset, is introduced for
global and local optimization. Experimental results on public datasets show
that the initial values and the extrinsic parameters, as well as the sensor
poses, can be accurately estimated by the proposed method.
Related papers
- An Accurate and Real-time Relative Pose Estimation from Triple Point-line Images by Decoupling Rotation and Translation [10.05584976985694]
3D-2D constraints provided by line features have been widely used in Visual Odometry (VO) and Structure-from-Motion (SfM) systems.
We propose a novel three-view pose solver based on rotation-translation decoupled estimation.
arXiv Detail & Related papers (2024-03-18T10:21:05Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms.
These functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor.
In this study, we provide two novel solutions to estimate these calibration parameters.
arXiv Detail & Related papers (2024-03-01T20:56:14Z) - Fixation-based Self-calibration for Eye Tracking in VR Headsets [0.21561701531034413]
The proposed method is based on the assumptions that the user's viewpoint can freely move.
fixations are first detected from the time-series data of uncalibrated gaze directions.
The calibration parameters are optimized by minimizing the sum of a dispersion metrics of the PoRs.
arXiv Detail & Related papers (2023-11-01T09:34:15Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - EDI: ESKF-based Disjoint Initialization for Visual-Inertial SLAM Systems [9.937997167972743]
We propose a novel approach for fast, accurate, and robust visual-inertial initialization.
Our method achieves an average scale error of 5.8% in less than 3 seconds.
arXiv Detail & Related papers (2023-08-04T19:06:58Z) - RAGO: Recurrent Graph Optimizer For Multiple Rotation Averaging [62.315673415889314]
This paper proposes a deep recurrent Rotation Averaging Graph (RAGO) for Multiple Rotation Averaging (MRA)
Our framework is a real-time learning-to-optimize rotation averaging graph with a tiny size deployed for real-world applications.
arXiv Detail & Related papers (2022-12-14T13:19:40Z) - DM-VIO: Delayed Marginalization Visual-Inertial Odometry [62.746533939737446]
We present DM-VIO, a visual-inertial system based on delayed marginalization and pose graph bundle adjustment.
We evaluate our system on the EuRoC, TUM-VI, and 4Seasons datasets, which comprise flying drone, large-scale handheld, and automotive scenarios.
arXiv Detail & Related papers (2022-01-11T18:30:37Z) - Robust 360-8PA: Redesigning The Normalized 8-point Algorithm for 360-FoV
Images [53.11097060367591]
We present a novel strategy for estimating an essential matrix from 360-FoV images in spherical projection.
We show that our normalization can increase the camera pose accuracy by about 20% without significantly overhead the time.
arXiv Detail & Related papers (2021-04-22T07:23:11Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.