論文の概要: JoyGen: Audio-Driven 3D Depth-Aware Talking-Face Video Editing
- arxiv url: http://arxiv.org/abs/2501.01798v1
- Date: Fri, 03 Jan 2025 13:14:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:31.461663
- Title: JoyGen: Audio-Driven 3D Depth-Aware Talking-Face Video Editing
- Title(参考訳): JoyGen: 音声による3D深度認識によるビデオ編集
- Authors: Qili Wang, Dajiang Wu, Zihang Xu, Junshi Huang, Jun Lv,
- Abstract要約: JoyGenは、対面生成のための2段階のフレームワークである。
第1段階では、3次元再構成モデルとオーディオ2モーションモデルにより同一性および表現係数が予測される。
第2段階では,顔生成における口唇音の正確な同期を包括的に監視する。
- 参考スコア(独自算出の注目度): 7.432808260671468
- License:
- Abstract: Significant progress has been made in talking-face video generation research; however, precise lip-audio synchronization and high visual quality remain challenging in editing lip shapes based on input audio. This paper introduces JoyGen, a novel two-stage framework for talking-face generation, comprising audio-driven lip motion generation and visual appearance synthesis. In the first stage, a 3D reconstruction model and an audio2motion model predict identity and expression coefficients respectively. Next, by integrating audio features with a facial depth map, we provide comprehensive supervision for precise lip-audio synchronization in facial generation. Additionally, we constructed a Chinese talking-face dataset containing 130 hours of high-quality video. JoyGen is trained on the open-source HDTF dataset and our curated dataset. Experimental results demonstrate superior lip-audio synchronization and visual quality achieved by our method.
- Abstract(参考訳): しかし, 音声入力による唇形状の編集において, 口唇音の正確な同期と高い視覚的品質は依然として困難である。
本稿では、音声駆動の唇の動き生成と視覚的外観合成を含む、2段階の会話顔生成フレームワークJoyGenを紹介する。
第1段階では、3次元再構成モデルとオーディオ2モーションモデルはそれぞれアイデンティティと表現係数を予測する。
次に,音声特徴と顔深度マップを組み合わせることで,顔生成における口唇音の正確な同期を包括的に監視する。
さらに,130時間の高品質ビデオを含む中国語音声データセットを構築した。
JoyGenは、オープンソースのHDTFデータセットとキュレートされたデータセットに基づいてトレーニングされています。
実験の結果, 口唇音の同期が良好で, 視覚的品質が良好であった。
関連論文リスト
- ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer [87.32518573172631]
ReSyncerは運動と外観を統合トレーニングで融合する。
パーソナライズされたパーソナライズされた微調整、ビデオ駆動のリップシンク、話すスタイルの転送、顔交換までサポートしています。
論文 参考訳(メタデータ) (2024-08-06T16:31:45Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalkは、音声から表現へのトランスフォーマーであり、高忠実な表現から顔へのフレームワークである。
第1成分として, 口唇運動に関連する個人性および個人内変動の特徴について考察した。
第2のコンポーネントでは、軽量な顔認証アライメント(FIA)モジュールを設計する。
この新しい設計により、高度で非効率な特徴アライメントモジュールに依存することなく、リアルタイムに細部を生成できる。
論文 参考訳(メタデータ) (2024-06-26T12:09:59Z) - GSmoothFace: Generalized Smooth Talking Face Generation via Fine Grained
3D Face Guidance [83.43852715997596]
GSmoothFaceは、粒度の細かい3次元顔モデルによってガイドされる、2段階の一般化された話し顔生成モデルである。
スピーカーのアイデンティティを保ちながらスムーズな唇の動きを合成することができる。
定量的および定性的な実験は、リアリズム、唇の同期、視覚的品質の観点から、我々の方法の優位性を確認する。
論文 参考訳(メタデータ) (2023-12-12T16:00:55Z) - Neural Text to Articulate Talk: Deep Text to Audiovisual Speech
Synthesis achieving both Auditory and Photo-realism [26.180371869137257]
会話顔生成における最先端技術は、主にリップシンキングに焦点を当て、音声クリップに条件付けされている。
NEUral Text to ARticulate Talk (NEUTART) は、音声視覚機能空間を用いた音声合成システムである。
モデルは、人間のような調音と、よく同期されたオーディオヴィジュアルストリームを備えた、フォトリアリスティックなトーキングフェイスビデオを生成する。
論文 参考訳(メタデータ) (2023-12-11T18:41:55Z) - Seeing What You Said: Talking Face Generation Guided by a Lip Reading
Expert [89.07178484337865]
音声合成は、コヒーレントな音声入力が与えられた唇に関する顔の動きを再構成する。
従来の研究では、唇音の同期と視覚的品質が重要であった。
そこで我々は, 唇読解の専門家を用いて, 生成した唇領域の知性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-29T07:51:07Z) - Masked Lip-Sync Prediction by Audio-Visual Contextual Exploitation in
Transformers [91.00397473678088]
従来の研究では、任意の目標の音声条件に対して、口唇同期音声を正確に生成する方法が検討されている。
本稿では,映像品質の正確なリップ同期を実現するAV-CAT(Audio-Visual Context-Aware Transformer)フレームワークを提案する。
我々のモデルは任意の被験者に対して高忠実度リップ同期結果を生成することができる。
論文 参考訳(メタデータ) (2022-12-09T16:32:46Z) - VideoReTalking: Audio-based Lip Synchronization for Talking Head Video
Editing In the Wild [37.93856291026653]
VideoReTalkingは、現実世界のトーキングヘッドビデオの顔を入力音声で編集する新しいシステムである。
感情が違う場合でも、高品質でリップシンクの出力ビデオを生成する。
論文 参考訳(メタデータ) (2022-11-27T08:14:23Z) - SyncTalkFace: Talking Face Generation with Precise Lip-Syncing via
Audio-Lip Memory [27.255990661166614]
音声から顔を生成することの課題は、口領域が入力された音声に対応するように、音声とビデオの2つの異なるモーダル情報を調整することである。
従来の手法では、オーディオ視覚表現学習を利用するか、ランドマークや3Dモデルのような中間構造情報を利用する。
本稿では,入力音声に対応する口領域の視覚情報を提供し,きめ細かな視覚的コヒーレンスを実現するオーディオ-リップメモリを提案する。
論文 参考訳(メタデータ) (2022-11-02T07:17:49Z) - Pose-Controllable Talking Face Generation by Implicitly Modularized
Audio-Visual Representation [96.66010515343106]
ポーズ制御可能な発話顔を生成するためのクリーンで効果的なフレームワークを提案する。
我々は1枚の写真のみを識別基準として生の顔画像を操作する。
私達のモデルに極度な視野の堅牢性および話す表面前部化を含む複数の高度の機能があります。
論文 参考訳(メタデータ) (2021-04-22T15:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。