Exciton Dynamics and Quantum Efficiencies in Optically Coupled OLEDs: A Unified Quantum Master Equation Approach
- URL: http://arxiv.org/abs/2501.01800v1
- Date: Fri, 03 Jan 2025 13:17:34 GMT
- Title: Exciton Dynamics and Quantum Efficiencies in Optically Coupled OLEDs: A Unified Quantum Master Equation Approach
- Authors: Olli Siltanen, Kimmo Luoma, Konstantinos S. Daskalakis,
- Abstract summary: We introduce a quantum master equation model spanning the zero-, weak-, and strong-coupling regimes.
We derive the different rates using Fermi's golden rule and Marcus theory.
- Score: 0.0
- License:
- Abstract: The primary function of organic light-emitting diodes (OLEDs) is to convert electrons into photons. However, only 25 % of the electronic states (singlets) in electrically excited fluorescent molecules can emit light, which is why triplet harvesting has attracted significant attention. Specifically, one often aims to maximize the rate of triplet-to-singlet conversion, while at the same time, it is crucial to depopulate the singlets fast enough -- before they convert to triplets or interact with other excited states, potentially breaking molecular bonds. Planar microcavities provide a viable architecture to address these issues. By confining the emitters within planar microcavities one can couple the excitons to cavity modes and engineer the population dynamics to one's liking. While the weak-coupling regime is renowned for Purcell-enhanced emission, strongly coupled excitons and photons hybridize to form entirely new energy eigenstates known as polaritons. To fully understand and optimize exciton-photon interactions and light-emission mechanisms across various coupling regimes, a unified theory of optically coupled (and uncoupled) OLEDs is needed. In this article, we introduce a quantum master equation model spanning the zero-, weak-, and strong-coupling regimes. We derive the different rates using Fermi's golden rule and Marcus theory, show how the different regimes converge, and finally evaluate the internal quantum efficiencies in all cases.
Related papers
- Generating optical cat states via quantum interference of multi-path
free-electron-photons interactions [0.0]
We propose a scheme to generate optical cat states based on the quantum interference of multi-path free-electron-photons interactions.
We show that the Wigner negativity oscillates with the coupling strength, and the optical cat states are successfully generated with high fidelity.
arXiv Detail & Related papers (2023-06-22T15:17:48Z) - The maximum refractive index of an atomic crystal $\unicode{x2013}$ from
quantum optics to quantum chemistry [52.77024349608834]
We investigate the index of an ordered arrangement of atoms, as a function of atomic density.
In quantum optics, we show that ideal light-matter interactions can have a single-mode nature.
At the onset of quantum chemistry, we show how two physical mechanisms can open up inelastic or spatial multi-mode light scattering processes.
arXiv Detail & Related papers (2023-03-20T10:29:12Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Optical-cavity mode squeezing by free electrons [0.0]
We show that the ponderomotive contribution to the electron-cavity interaction can actually create a more general set of optical states.
Our work introduces a disruptive approach to the creation of nontrivial quantum cavity states for quantum information and optics applications.
arXiv Detail & Related papers (2022-06-24T10:57:43Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z) - Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling
Strengths [0.0]
Quantum light-matter systems at strong coupling are notoriously challenging to analyze.
We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths.
arXiv Detail & Related papers (2020-10-07T18:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.