論文の概要: Uncertainty-Aware Label Refinement on Hypergraphs for Personalized Federated Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2501.01816v1
- Date: Fri, 03 Jan 2025 13:59:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:30.181170
- Title: Uncertainty-Aware Label Refinement on Hypergraphs for Personalized Federated Facial Expression Recognition
- Title(参考訳): 個人化された顔表情認識のためのハイパーグラフにおける不確かさを意識したラベル再定義
- Authors: Hu Ding, Yan Yan, Yang Lu, Jing-Hao Xue, Hanzi Wang,
- Abstract要約: 我々はhYpergraphs (AMY) 法に基づく新しい不確実性認識ラベルリファレントを開発する。
ローカルトレーニングでは、各ローカルモデルは、バックボーン、不確実性推定(UE)ブロック、および式分類(EC)ブロックで構成される。
次に、ローカルクライアントにおける標本の不確実性重みを推定するために、パーソナライズされた不確実性推定器を導入する。
- 参考スコア(独自算出の注目度): 58.98052764581606
- License:
- Abstract: Most facial expression recognition (FER) models are trained on large-scale expression data with centralized learning. Unfortunately, collecting a large amount of centralized expression data is difficult in practice due to privacy concerns of facial images. In this paper, we investigate FER under the framework of personalized federated learning, which is a valuable and practical decentralized setting for real-world applications. To this end, we develop a novel uncertainty-Aware label refineMent on hYpergraphs (AMY) method. For local training, each local model consists of a backbone, an uncertainty estimation (UE) block, and an expression classification (EC) block. In the UE block, we leverage a hypergraph to model complex high-order relationships between expression samples and incorporate these relationships into uncertainty features. A personalized uncertainty estimator is then introduced to estimate reliable uncertainty weights of samples in the local client. In the EC block, we perform label propagation on the hypergraph, obtaining high-quality refined labels for retraining an expression classifier. Based on the above, we effectively alleviate heterogeneous sample uncertainty across clients and learn a robust personalized FER model in each client. Experimental results on two challenging real-world facial expression databases show that our proposed method consistently outperforms several state-of-the-art methods. This indicates the superiority of hypergraph modeling for uncertainty estimation and label refinement on the personalized federated FER task. The source code will be released at https://github.com/mobei1006/AMY.
- Abstract(参考訳): ほとんどの顔表情認識(FER)モデルは、集中学習を伴う大規模表情データに基づいて訓練されている。
残念ながら、顔画像のプライバシー上の懸念から、大量の集中表現データを集めることは、実際には難しい。
本稿では、実世界のアプリケーションにとって価値があり実践的な分散環境であるパーソナライズド・フェデレーション・ラーニングの枠組みの下でFERについて検討する。
この目的のために,hYpergraphs (AMY) 法に基づく新しい不確実性認識ラベルリファレントを開発する。
ローカルトレーニングでは、各ローカルモデルは、バックボーン、不確実性推定(UE)ブロック、および式分類(EC)ブロックで構成される。
UEブロックでは、ハイパーグラフを利用して、表現サンプル間の複雑な高次関係をモデル化し、これらの関係を不確実性特徴に組み込む。
次に、ローカルクライアントにおける標本の不確実性重みを推定するために、パーソナライズされた不確実性推定器を導入する。
ECブロックでは、ハイパーグラフ上でラベルの伝搬を行い、表現分類器を再訓練するための高品質な洗練されたラベルを得る。
以上に基づいて、クライアント間の不均一なサンプルの不確実性を効果的に軽減し、各クライアントで堅牢なパーソナライズされたFERモデルを学ぶ。
2つの挑戦的な実世界の表情データベースに対する実験結果から,提案手法は一貫していくつかの最先端手法より優れていることが示された。
このことは、パーソナライズされたFERタスクにおける不確実性推定とラベル改善のためのハイパーグラフモデリングの優位性を示している。
ソースコードはhttps://github.com/mobei1006/AMYで公開される。
関連論文リスト
- Boosting Federated Learning with FedEntOpt: Mitigating Label Skew by Entropy-Based Client Selection [13.851391819710367]
ディープラーニングドメインは通常、最適なパフォーマンスのために大量のデータを必要とします。
FedEntOptは、ラベル配布スキューによるパフォーマンスの問題を軽減するように設計されている。
低い参加率とクライアントのドロップアウトのシナリオでは、堅牢で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-02T13:31:36Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - FedAnchor: Enhancing Federated Semi-Supervised Learning with Label
Contrastive Loss for Unlabeled Clients [19.3885479917635]
Federated Learning(FL)は、デバイス間で共有されたグローバルモデルの協調トレーニングを促進する分散学習パラダイムである。
本稿では,サーバ上のラベル付きアンカーデータにのみ訓練された分類ヘッドと組み合わせて,アンカーヘッドと呼ばれるユニークな二重ヘッド構造を導入する,革新的なFSSL手法であるFedAnchorを提案する。
提案手法は, 高信頼度モデル予測サンプルに基づいて, 疑似ラベル技術に係わる検証バイアスと過度に適合する問題を緩和する。
論文 参考訳(メタデータ) (2024-02-15T18:48:21Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
MTACと呼ばれる不確実な表情認識に対処するためのマルチタスク支援補正法を提案する。
具体的には、信頼度推定ブロックと重み付け正則化モジュールを用いて、固体試料をハイライトし、バッチ毎に不確かさサンプルを抑圧する。
RAF-DB、AffectNet、AffWild2データセットの実験は、MTACが合成および実際の不確実性に直面した際のベースラインよりも大幅に改善されていることを示した。
論文 参考訳(メタデータ) (2022-12-14T10:28:08Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Uncertainty-aware Label Distribution Learning for Facial Expression
Recognition [13.321770808076398]
本研究では,不確実性と曖昧性に対する深層モデルのロバスト性を改善するために,新しい不確実性を考慮したラベル分布学習法を提案する。
本手法は深層ネットワークに容易に組み込んで,より訓練の監督と認識精度の向上を図ることができる。
論文 参考訳(メタデータ) (2022-09-21T15:48:41Z) - Suppressing Uncertainties for Large-Scale Facial Expression Recognition [81.51495681011404]
本稿では,不確実性を効果的に抑制し,深層ネットワークが不確実な顔画像に過度に収まらないような,シンプルで効率的なセルフキュアネットワーク(SCN)を提案する。
公開ベンチマークの結果、我々のSCNは現在の最先端メソッドよりも、RAF-DBで textbf88.14%、AffectNetで textbf60.23%、FERPlusで textbf89.35% を上回りました。
論文 参考訳(メタデータ) (2020-02-24T17:24:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。