MoColl: Agent-Based Specific and General Model Collaboration for Image Captioning
- URL: http://arxiv.org/abs/2501.01834v3
- Date: Mon, 27 Jan 2025 16:34:59 GMT
- Title: MoColl: Agent-Based Specific and General Model Collaboration for Image Captioning
- Authors: Pu Yang, Bin Dong,
- Abstract summary: This paper proposes a novel agent-enhanced model collaboration framework called MoColl.
MoColl decomposes complex image captioning tasks into a series of interconnected question-answer subtasks.
Experimental results on radiology report generation validate the effectiveness of the proposed framework.
- Score: 4.955697042432618
- License:
- Abstract: Image captioning is a critical task at the intersection of computer vision and natural language processing, with wide-ranging applications across various domains. For complex tasks such as diagnostic report generation, deep learning models require not only domain-specific image-caption datasets but also the incorporation of relevant general knowledge to provide contextual accuracy. Existing approaches exhibit inherent limitations: specialized models excel in capturing domain-specific details but lack generalization, while vision-language models (VLMs) built on large language models (LLMs) leverage general knowledge but struggle with domain-specific adaptation. To address these limitations, this paper proposes a novel agent-enhanced model collaboration framework, which we call MoColl, designed to effectively integrate domain-specific and general knowledge. Specifically, our approach is to decompose complex image captioning tasks into a series of interconnected question-answer subtasks. A trainable visual question answering (VQA) model is employed as a specialized tool to focus on domain-specific visual analysis, answering task-specific questions based on image content. Concurrently, an LLM-based agent with general knowledge formulates these questions and synthesizes the resulting question-answer pairs into coherent captions. Beyond its role in leveraging the VQA model, the agent further guides its training to enhance its domain-specific capabilities. Experimental results on radiology report generation validate the effectiveness of the proposed framework, demonstrating significant improvements in the quality of generated reports.
Related papers
- Enhanced Multimodal RAG-LLM for Accurate Visual Question Answering [10.505845766495128]
Multimodal large language models (MLLMs) have made significant progress in integrating visual and textual modalities.
We propose a novel framework based on multimodal retrieval-augmented generation (RAG)
RAG introduces structured scene graphs to enhance object recognition, relationship identification, and spatial understanding within images.
arXiv Detail & Related papers (2024-12-30T13:16:08Z) - X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models [77.98981338798383]
In-context generation is a key component of large language models' (LLMs) open-task generalization capability.
X-Prompt is a purely auto-regressive large-vision language model designed to deliver competitive performance across a wide range of both seen and unseen image generation tasks.
A unified training task for both text and image prediction enables X-Prompt to handle general image generation with enhanced task awareness from in-context examples.
arXiv Detail & Related papers (2024-12-02T18:59:26Z) - Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering [71.62961521518731]
HeurVidQA is a framework that leverages domain-specific entity-actions to refine pre-trained video-language foundation models.
Our approach treats these models as implicit knowledge engines, employing domain-specific entity-action prompters to direct the model's focus toward precise cues that enhance reasoning.
arXiv Detail & Related papers (2024-10-12T06:22:23Z) - Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization [7.522493227357079]
Large Language Models (LLMs) are pre-trained on large-scale corpora.
LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions.
We introduce SMART-SLIC, a highly domain-specific LLM framework.
arXiv Detail & Related papers (2024-10-03T17:40:55Z) - Unified Language-driven Zero-shot Domain Adaptation [55.64088594551629]
Unified Language-driven Zero-shot Domain Adaptation (ULDA) is a novel task setting.
It enables a single model to adapt to diverse target domains without explicit domain-ID knowledge.
arXiv Detail & Related papers (2024-04-10T16:44:11Z) - Unifying Image Processing as Visual Prompting Question Answering [62.84955983910612]
Image processing is a fundamental task in computer vision, which aims at enhancing image quality and extracting essential features for subsequent vision applications.
Traditionally, task-specific models are developed for individual tasks and designing such models requires distinct expertise.
We propose a universal model for general image processing that covers image restoration, image enhancement, image feature extraction tasks.
arXiv Detail & Related papers (2023-10-16T15:32:57Z) - InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists [66.85125112199898]
We develop a unified language interface for computer vision tasks that abstracts away task-specific design choices.
Our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models.
arXiv Detail & Related papers (2023-09-30T14:26:43Z) - Domain-Controlled Prompt Learning [49.45309818782329]
Existing prompt learning methods often lack domain-awareness or domain-transfer mechanisms.
We propose a textbfDomain-Controlled Prompt Learning for the specific domains.
Our method achieves state-of-the-art performance in specific domain image recognition datasets.
arXiv Detail & Related papers (2023-09-30T02:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.