論文の概要: A Novel Convolution and Attention Mechanism-based Model for 6D Object Pose Estimation
- arxiv url: http://arxiv.org/abs/2501.01993v1
- Date: Tue, 31 Dec 2024 18:47:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:30.889408
- Title: A Novel Convolution and Attention Mechanism-based Model for 6D Object Pose Estimation
- Title(参考訳): 6次元オブジェクトポス推定のための新しい畳み込み・アテンション機構に基づくモデル
- Authors: Alexander Du, Yingwu Zhu,
- Abstract要約: RGB画像から6Dオブジェクトのポーズを推定することは、深度情報の欠如が2次元投影から3次元構造を推定する必要があるため困難である。
従来の手法はグリッドベースのデータ構造によるディープラーニングに頼っていることが多いが、抽出された機能間の複雑な依存関係を捉えるのに苦労している。
本稿では,各画素の時間的特徴がノードとして機能し,それらの関係はノード接続や空間的相互作用を通じて定義される,画像から直接のグラフベース表現を提案する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License:
- Abstract: Estimating 6D object poses from RGB images is challenging because the lack of depth information requires inferring a three dimensional structure from 2D projections. Traditional methods often rely on deep learning with grid based data structures but struggle to capture complex dependencies among extracted features. To overcome this, we introduce a graph based representation derived directly from images, where spatial temporal features of each pixel serve as nodes, and relationships between them are defined through node connectivity and spatial interactions. We also employ feature selection mechanisms that use spatial attention and self attention distillation, along with a Legendre convolution layer leveraging the orthogonality of Legendre polynomials for numerical stability. Experiments on the LINEMOD, Occluded LINEMOD, and YCB Video datasets demonstrate that our method outperforms nine existing approaches and achieves state of the art benchmark in object pose estimation.
- Abstract(参考訳): RGB画像から6次元オブジェクトのポーズを推定することは、深さ情報の欠如が2次元投影から3次元構造を推定する必要があるため困難である。
従来の手法はグリッドベースのデータ構造によるディープラーニングに頼っていることが多いが、抽出された機能間の複雑な依存関係を捉えるのに苦労している。
これを解決するために,各画素の空間的時間的特徴がノードとして機能し,それらの関係はノード接続や空間的相互作用を通じて定義される,画像から直接導出されるグラフベースの表現を導入する。
また,空間的注意と自己注意蒸留を用いた特徴選択機構と,レジェンダ多項式の直交性を利用したレジェンダの畳み込み層を数値安定性に活用する。
LINEMOD, Occluded LINEMOD, YCB Video を用いた実験により, 提案手法が既存の9つの手法より優れており, オブジェクトポーズ推定における最先端のベンチマークが達成されていることを示す。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - Pseudo Flow Consistency for Self-Supervised 6D Object Pose Estimation [14.469317161361202]
補助情報なしで純粋なRGB画像で訓練できる6次元オブジェクトポーズ推定法を提案する。
提案手法を3つの挑戦的データセット上で評価し,最先端の自己管理手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-19T13:52:18Z) - Hierarchical Graph Neural Networks for Proprioceptive 6D Pose Estimation
of In-hand Objects [1.8263882169310044]
マルチモーダル(ビジョンとタッチ)データを組み合わせた階層型グラフニューラルネットワークアーキテクチャを提案する。
また、グラフベースのオブジェクト表現を学習するために、モダリティ内および横断的に情報を流す階層的なメッセージパッシング操作を導入する。
論文 参考訳(メタデータ) (2023-06-28T01:18:53Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
現在のモノクラーベース6Dオブジェクトポーズ推定法は、一般的にRGBDベースの手法よりも競争力の低い結果が得られる。
本稿では,短いベースライン2ビュー設定による3次元幾何体積に基づくポーズ推定手法を提案する。
実験により,本手法は最先端の単分子法よりも優れ,異なる物体やシーンにおいて堅牢であることが示された。
論文 参考訳(メタデータ) (2021-09-25T02:55:05Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
6次元ポーズ推定のための効率的なカテゴリレベルの特徴抽出が可能な高速形状ベースネットワーク(FS-Net)を提案する。
提案手法は,カテゴリレベルおよびインスタンスレベルの6Dオブジェクトのポーズ推定における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-03-12T03:07:24Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。