論文の概要: Safeguarding Large Language Models in Real-time with Tunable Safety-Performance Trade-offs
- arxiv url: http://arxiv.org/abs/2501.02018v1
- Date: Thu, 02 Jan 2025 15:15:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:10:12.983735
- Title: Safeguarding Large Language Models in Real-time with Tunable Safety-Performance Trade-offs
- Title(参考訳): 可変安全性能トレードオフによる大規模言語モデルのリアルタイム保護
- Authors: Joao Fonseca, Andrew Bell, Julia Stoyanovich,
- Abstract要約: 大規模言語モデル(LLM)は、ジェイルブレイク攻撃の影響を受けやすいことが示されている。
ジェイルブレイクはサイバー犯罪者やブラックハット俳優によって悪用され、重大な被害を受けている。
制御されたテキスト生成と「ナッジ」を組み合わせた新しいセーフガード「SafeNudge」を導入する。
- 参考スコア(独自算出の注目度): 9.312913540732445
- License:
- Abstract: Large Language Models (LLMs) have been shown to be susceptible to jailbreak attacks, or adversarial attacks used to illicit high risk behavior from a model. Jailbreaks have been exploited by cybercriminals and blackhat actors to cause significant harm, highlighting the critical need to safeguard widely-deployed models. Safeguarding approaches, which include fine-tuning models or having LLMs "self-reflect", may lengthen the inference time of a model, incur a computational penalty, reduce the semantic fluency of an output, and restrict ``normal'' model behavior. Importantly, these Safety-Performance Trade-offs (SPTs) remain an understudied area. In this work, we introduce a novel safeguard, called SafeNudge, that combines Controlled Text Generation with "nudging", or using text interventions to change the behavior of a model. SafeNudge triggers during text-generation while a jailbreak attack is being executed, and can reduce successful jailbreak attempts by 30% by guiding the LLM towards a safe responses. It adds minimal latency to inference and has a negligible impact on the semantic fluency of outputs. Further, we allow for tunable SPTs. SafeNudge is open-source and available through https://pypi.org/, and is compatible with models loaded with the Hugging Face "transformers" library.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ジェイルブレイク攻撃や、モデルから高いリスク行動を不正にするために使用される敵攻撃の影響を受けやすいことが示されている。
ジェイルブレイクはサイバー犯罪者やブラックハット俳優によって悪用され、広範囲に配備されたモデルを保護するための重要な必要性を強調している。
微調整モデルやLPM"self-reflect"を含む保護的アプローチは、モデルの推論時間を延長し、計算的ペナルティを発生させ、出力のセマンティック・フラレンシーを減少させ、'`normal'モデルの振る舞いを制限する。
重要な点として、これらの安全性能トレードオフ(SPT)は未調査領域である。
そこで本研究では,制御されたテキスト生成と"育児"を組み合わせた新しいセーフガードであるSafeNudgeを導入する。
SafeNudgeは、ジェイルブレイク攻撃の実行中にテキストジェネレーション中にトリガーし、LDMを安全な応答に導くことで、ジェイルブレイクの試みを30%削減することができる。
推論に最小限のレイテンシを追加し、出力のセマンティック・フラレンシーに無視できる影響を与えます。
さらに、調整可能なSPTを許可する。
SafeNudgeはhttps://pypi.org/を通じてオープンソースであり、Hugging Faceの"transformers"ライブラリでロードされたモデルと互換性がある。
関連論文リスト
- A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
本研究では,ジェイルブレイク攻撃の原理的比較のための統一的脅威モデルを提案する。
私たちの脅威モデルは、パープレキシティの制約を組み合わせることで、ジェイルブレイクが自然のテキストからどれだけ逸脱するかを測定します。
我々は、この新しい現実的な脅威モデルに人気のある攻撃を適用する。
論文 参考訳(メタデータ) (2024-10-21T17:27:01Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
ジェイルブレイク攻撃は、大きな言語モデルを操作して有害なコンテンツを生成する。
Jailbreak Antidoteは、モデルの内部状態のスパースサブセットを操作することで、安全優先のリアルタイム調整を可能にする。
解析の結果,LLMの安全性関連情報はわずかに分散していることがわかった。
論文 参考訳(メタデータ) (2024-10-03T08:34:17Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
我々は,プリフィックスガイダンス(PG)という,プラグアンドプレイで容易に配置可能なジェイルブレイク防御フレームワークを提案する。
PGは、モデルの出力の最初の数個のトークンを直接設定することで、有害なプロンプトを特定するようモデルに誘導する。
3つのモデルと5つの攻撃方法におけるPGの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-15T14:51:32Z) - SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance [48.36220909956064]
SafeAlignerは、ジェイルブレイク攻撃に対する防御を強化するためのデコード段階で実装された方法論である。
安全性を高めるために訓練されたセンチネルモデルと、よりリスクの高い応答を生成するように設計されたイントルーダモデルである。
SafeAlignerは有害なトークンの発生を低減しつつ、有益トークンの可能性を高めることができることを示す。
論文 参考訳(メタデータ) (2024-06-26T07:15:44Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
大型言語モデル(LLM)における安全バックドア攻撃は、正常な相互作用中の検出を回避しながら、安全でない振る舞いをステルス的に引き起こすことができる。
モデル埋め込み空間において,バックドアトリガーが比較的均一なドリフトを引き起こすという知見を活かした緩和手法であるBEEARを提案する。
両レベル最適化手法は、不要な振る舞いを誘発する普遍的な埋め込み摂動を特定し、モデルパラメータを調整し、これらの摂動に対する安全な振舞いを強化する。
論文 参考訳(メタデータ) (2024-06-24T19:29:47Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
オープンソースの大規模言語モデルは、有害なコンテンツを生成するために容易に変換できる。
5つの異なる組織がリリースした8つのモデルに対する実験は、シャドーアライメントアタックの有効性を実証している。
この研究は、悪意のある攻撃者に対するオープンソースのLLMの安全性を見直し、強化するための集団的な取り組みの発端となる。
論文 参考訳(メタデータ) (2023-10-04T16:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。