論文の概要: Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks
- arxiv url: http://arxiv.org/abs/2405.20099v1
- Date: Thu, 30 May 2024 14:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:58:47.052613
- Title: Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks
- Title(参考訳): ジェイルブレイク攻撃に対するLLMのロバストかつ解釈可能な防御策
- Authors: Chen Xiong, Xiangyu Qi, Pin-Yu Chen, Tsung-Yi Ho,
- Abstract要約: 本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
- 参考スコア(独自算出の注目度): 59.46556573924901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety, security, and compliance are essential requirements when aligning large language models (LLMs). However, many seemingly aligned LLMs are soon shown to be susceptible to jailbreak attacks. These attacks aim to circumvent the models' safety guardrails and security mechanisms by introducing jailbreak prompts into malicious queries. In response to these challenges, this paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism specifically designed to protect LLMs against such sophisticated jailbreak strategies. Unlike previous approaches, which have often compromised the utility of the model for the sake of safety, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs. Our method uses strategically designed interpretable suffix prompts that effectively thwart a wide range of standard and adaptive jailbreak techniques. Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP, showing significant reductions in ASR with negligible impact on utility. Our approach not only outperforms existing defense strategies in balancing safety and functionality, but also provides a scalable and interpretable solution applicable to various LLM platforms.
- Abstract(参考訳): 安全性、セキュリティ、コンプライアンスは、大きな言語モデル(LLM)を調整する上で必須の要件である。
しかし、一見整列したLSMの多くは、すぐにジェイルブレイク攻撃の影響を受けやすいことが示されている。
これらの攻撃は、悪意のあるクエリにjailbreakプロンプトを導入することによって、モデルの安全ガードレールとセキュリティメカニズムを回避することを目的としている。
これらの課題に対応するために,本論文では,LDMをこのような高度なジェイルブレイク戦略から守るために設計された,新しいプロンプトベースの防御機構であるDPPを導入する。
安全のためにしばしばモデルの有用性を損なう従来のアプローチとは異なり、DPPはLLMの高機能を維持しながら最小の攻撃成功率(ASR)を達成するように設計されている。
提案手法は戦略的に設計された解釈可能な接尾辞プロンプトを用いて,幅広い標準および適応ジェイルブレイクテクニックを効果的に抑制する。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルで実施された実験結果から,DSPの堅牢性と適応性が確認された。
我々のアプローチは、安全性と機能のバランスをとる既存の防衛戦略を上回るだけでなく、様々なLLMプラットフォームに適用可能なスケーラブルで解釈可能なソリューションも提供します。
関連論文リスト
- Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
大規模言語モデル(LLM)におけるジェイルブレークは、LLMを騙して有害なテキストを生成するというセキュリティ上の問題である。
我々は7つの異なるジェイルブレイク法を詳細に分析し、不一致が不十分な観察サンプルから生じることを確認した。
安全境界内でのアクティベーションを適応的に制限する「textbfActivation Boundary Defense (ABD)」という新しい防衛法を提案する。
論文 参考訳(メタデータ) (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
訓練時安全アライメントにもかかわらず、MLLMは脱獄攻撃に弱いままである。
我々は、安全な報酬モデルを利用してジェイルブレイク攻撃を防御する推論時防衛フレームワークImmuneを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:00:10Z) - Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
我々は,プリフィックスガイダンス(PG)という,プラグアンドプレイで容易に配置可能なジェイルブレイク防御フレームワークを提案する。
PGは、モデルの出力の最初の数個のトークンを直接設定することで、有害なプロンプトを特定するようモデルに誘導する。
3つのモデルと5つの攻撃方法におけるPGの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-15T14:51:32Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
本稿では,自衛隊(SelfDefend)と呼ばれる総称LDMジェイルブレイク防御フレームワークを紹介する。
主要なjailbreak攻撃に対して,メインストリームのGPT-3.5/4モデルを使用することを実証的に検証した。
防衛の堅牢性をさらに向上し、コストを最小化するために、我々は専用のオープンソース防衛モデルをチューニングするためにデータ蒸留アプローチを採用している。
論文 参考訳(メタデータ) (2024-06-08T15:45:31Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。