Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection
- URL: http://arxiv.org/abs/2501.02020v1
- Date: Thu, 02 Jan 2025 16:45:05 GMT
- Title: Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection
- Authors: Kedi Chen, Qin Chen, Jie Zhou, Xinqi Tao, Bowen Ding, Jingwen Xie, Mingchen Xie, Peilong Li, Feng Zheng, Liang He,
- Abstract summary: Large Language Models (LLMs) are prone to hallucination with non-factual or unfaithful statements.
We propose a method to enhance uncertainty modeling with semantic graph for hallucination detection.
- Score: 46.930149191121416
- License:
- Abstract: Large Language Models (LLMs) are prone to hallucination with non-factual or unfaithful statements, which undermines the applications in real-world scenarios. Recent researches focus on uncertainty-based hallucination detection, which utilizes the output probability of LLMs for uncertainty calculation and does not rely on external knowledge or frequent sampling from LLMs. Whereas, most approaches merely consider the uncertainty of each independent token, while the intricate semantic relations among tokens and sentences are not well studied, which limits the detection of hallucination that spans over multiple tokens and sentences in the passage. In this paper, we propose a method to enhance uncertainty modeling with semantic graph for hallucination detection. Specifically, we first construct a semantic graph that well captures the relations among entity tokens and sentences. Then, we incorporate the relations between two entities for uncertainty propagation to enhance sentence-level hallucination detection. Given that hallucination occurs due to the conflict between sentences, we further present a graph-based uncertainty calibration method that integrates the contradiction probability of the sentence with its neighbors in the semantic graph for uncertainty calculation. Extensive experiments on two datasets show the great advantages of our proposed approach. In particular, we obtain substantial improvements with 19.78% in passage-level hallucination detection.
Related papers
- Can Your Uncertainty Scores Detect Hallucinated Entity? [14.432545893757677]
We propose a new data set, HalluEntity, which annotates hallucination at the entity level.
Based on the dataset, we evaluate uncertainty-based hallucination detection approaches across 17 modern LLMs.
Our experimental results show that uncertainty estimation approaches focusing on individual token probabilities tend to over-predict hallucinations.
arXiv Detail & Related papers (2025-02-17T16:01:41Z) - Hallucinations are inevitable but statistically negligible [23.12905996928255]
Hallucinations, a phenomenon where a language model (LM) generates nonfactual content, pose a significant challenge to the practical deployment of LMs.
A recent study established a computability-theoretic result showing that any LM will inevitably generate hallucinations on an infinite set of inputs.
We prove that hallucinations can be made statistically negligible, provided that the quality and quantity of the training data are sufficient.
arXiv Detail & Related papers (2025-02-15T07:28:40Z) - To Believe or Not to Believe Your LLM [51.2579827761899]
We explore uncertainty quantification in large language models (LLMs)
We derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large.
We conduct a series of experiments which demonstrate the advantage of our formulation.
arXiv Detail & Related papers (2024-06-04T17:58:18Z) - Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations [63.330182403615886]
A major barrier towards the practical deployment of large language models (LLMs) is their lack of reliability.
Three situations where this is particularly apparent are correctness, hallucinations when given unanswerable questions, and safety.
In all three cases, models should ideally abstain from responding, much like humans, whose ability to understand uncertainty makes us refrain from answering questions we don't know.
arXiv Detail & Related papers (2024-04-16T23:56:38Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - In-Context Sharpness as Alerts: An Inner Representation Perspective for
Hallucination Mitigation [36.31646727970656]
Large language models (LLMs) frequently hallucinate and produce factual errors.
correct generations tend to have sharper context activations in the hidden states of the in-context tokens, compared to the incorrect ones.
We propose an entropy-based metric to quantify the sharpness'' among the in-context hidden states and incorporate it into the decoding process.
arXiv Detail & Related papers (2024-03-03T15:53:41Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
We find a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty.
This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, when uncertain about a continuation.
We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty.
arXiv Detail & Related papers (2022-10-24T13:30:54Z) - On Hallucination and Predictive Uncertainty in Conditional Language
Generation [76.18783678114325]
Higher predictive uncertainty corresponds to a higher chance of hallucination.
Epistemic uncertainty is more indicative of hallucination than aleatoric or total uncertainties.
It helps to achieve better results of trading performance in standard metric for less hallucination with the proposed beam search variant.
arXiv Detail & Related papers (2021-03-28T00:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.