Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
- URL: http://arxiv.org/abs/2503.14477v2
- Date: Tue, 22 Apr 2025 19:00:41 GMT
- Title: Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
- Authors: Ziwei Ji, Lei Yu, Yeskendir Koishekenov, Yejin Bang, Anthony Hartshorn, Alan Schelten, Cheng Zhang, Pascale Fung, Nicola Cancedda,
- Abstract summary: We find that verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs.<n>We show that this has only moderate correlation with the actual semantic uncertainty'' of the model.
- Score: 51.92795774118647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LLMs often adopt an assertive language style also when making false claims. Such ``overconfident hallucinations'' mislead users and erode trust. Achieving the ability to express in language the actual degree of uncertainty around a claim is therefore of great importance. We find that ``verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs, and show that this has only moderate correlation with the actual ``semantic uncertainty'' of the model. We apply this insight and show that (1) the mismatch between semantic and verbal uncertainty is a better predictor of hallucinations than semantic uncertainty alone and (2) we can intervene on verbal uncertainty at inference time and reduce confident hallucinations on short-form answers, achieving an average relative reduction of ~30%.
Related papers
- Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence [16.311538811237536]
Large language models (LLMs) are increasingly used for factual question-answering.
For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence.
Many prior methods calculate lexical uncertainty, estimating a model's confidence in the specific string it generated.
arXiv Detail & Related papers (2025-03-18T21:29:29Z) - Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection [46.930149191121416]
Large Language Models (LLMs) are prone to hallucination with non-factual or unfaithful statements.<n>We propose a method to enhance uncertainty modeling with semantic graph for hallucination detection.
arXiv Detail & Related papers (2025-01-02T16:45:05Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - "I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust [51.542856739181474]
We show how different natural language expressions of uncertainty impact participants' reliance, trust, and overall task performance.
We find that first-person expressions decrease participants' confidence in the system and tendency to agree with the system's answers, while increasing participants' accuracy.
Our findings suggest that using natural language expressions of uncertainty may be an effective approach for reducing overreliance on LLMs, but that the precise language used matters.
arXiv Detail & Related papers (2024-05-01T16:43:55Z) - Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations [63.330182403615886]
A major barrier towards the practical deployment of large language models (LLMs) is their lack of reliability.
Three situations where this is particularly apparent are correctness, hallucinations when given unanswerable questions, and safety.
In all three cases, models should ideally abstain from responding, much like humans, whose ability to understand uncertainty makes us refrain from answering questions we don't know.
arXiv Detail & Related papers (2024-04-16T23:56:38Z) - In-Context Sharpness as Alerts: An Inner Representation Perspective for
Hallucination Mitigation [36.31646727970656]
Large language models (LLMs) frequently hallucinate and produce factual errors.
correct generations tend to have sharper context activations in the hidden states of the in-context tokens, compared to the incorrect ones.
We propose an entropy-based metric to quantify the sharpness'' among the in-context hidden states and incorporate it into the decoding process.
arXiv Detail & Related papers (2024-03-03T15:53:41Z) - On Hallucination and Predictive Uncertainty in Conditional Language
Generation [76.18783678114325]
Higher predictive uncertainty corresponds to a higher chance of hallucination.
Epistemic uncertainty is more indicative of hallucination than aleatoric or total uncertainties.
It helps to achieve better results of trading performance in standard metric for less hallucination with the proposed beam search variant.
arXiv Detail & Related papers (2021-03-28T00:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.