論文の概要: 3D Cloud reconstruction through geospatially-aware Masked Autoencoders
- arxiv url: http://arxiv.org/abs/2501.02035v1
- Date: Fri, 03 Jan 2025 12:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:04.452462
- Title: 3D Cloud reconstruction through geospatially-aware Masked Autoencoders
- Title(参考訳): 地理的に認識されたマスケッドオートエンコーダによる3次元クラウド再構築
- Authors: Stella Girtsou, Emiliano Diaz Salas-Porras, Lilli Freischem, Joppe Massant, Kyriaki-Margarita Bintsi, Guiseppe Castiglione, William Jones, Michael Eisinger, Emmanuel Johnson, Anna Jungbluth,
- Abstract要約: 本研究では,MSG/SEVIRIの静止画像とCloudSat/CPRの雲面のレーダ反射率測定を利用して3次元雲構造を再構成する。
まず、自己教師あり学習法(SSL)の手法をMAE(Masked Autoencoders)とSatMAE(SatMAE)に応用し、マッチングした画像のペアにモデルを微調整する。
- 参考スコア(独自算出の注目度): 1.4124182346539256
- License:
- Abstract: Clouds play a key role in Earth's radiation balance with complex effects that introduce large uncertainties into climate models. Real-time 3D cloud data is essential for improving climate predictions. This study leverages geostationary imagery from MSG/SEVIRI and radar reflectivity measurements of cloud profiles from CloudSat/CPR to reconstruct 3D cloud structures. We first apply self-supervised learning (SSL) methods-Masked Autoencoders (MAE) and geospatially-aware SatMAE on unlabelled MSG images, and then fine-tune our models on matched image-profile pairs. Our approach outperforms state-of-the-art methods like U-Nets, and our geospatial encoding further improves prediction results, demonstrating the potential of SSL for cloud reconstruction.
- Abstract(参考訳): 雲は、気候モデルに大きな不確実性をもたらす複雑な効果と地球の放射収支において重要な役割を果たす。
リアルタイム3Dクラウドデータは、気候予測の改善に不可欠である。
本研究では,MSG/SEVIRIの静止画像とCloudSat/CPRの雲面のレーダ反射率測定を利用して3次元雲構造を再構成する。
まず、自己教師あり学習法(SSL)の手法をMAE(Masked Autoencoders)とSatMAE(SatMAE)に応用し、マッチングした画像のペアにモデルを微調整する。
我々のアプローチはU-Netsのような最先端の手法よりも優れており、地理空間エンコーディングは予測結果をさらに改善し、クラウド再構築におけるSSLの可能性を示している。
関連論文リスト
- Removing cloud shadows from ground-based solar imagery [0.33748750222488655]
本稿では,U-Netアーキテクチャに基づくクラウドシャドウの除去手法を提案し,古典的監視と条件付きGANを比較した。
我々は,実画像と合成雲の新しいデータセットを用いて,2つの異なる画像モダリティについて評価を行った。
論文 参考訳(メタデータ) (2024-07-18T10:38:24Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
本稿では,少数の画像から点雲を再構成し,そのレンダリングから点雲を識別する手法を提案する。
制約条件下での再構成を改善するため,ハイブリッド表面と外観の相違点のトレーニングを規則化する。
これらの学習したフィルタを使って、3Dの監督なしに来る点雲ノイズを除去する方法を実証する。
論文 参考訳(メタデータ) (2024-04-01T13:38:16Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
本稿では,HVDistillと呼ばれるハイブリッドビューに基づく知識蒸留フレームワークを提案する。
提案手法は,スクラッチからトレーニングしたベースラインに対して一貫した改善を実現し,既存のスキームを大幅に上回っている。
論文 参考訳(メタデータ) (2024-03-18T14:18:08Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
ディープラーニングアルゴリズムは画像セグメンテーション問題を解決するための有望なアプローチとして登場してきた。
本稿では,Lipschitz Stable Attention NetworkによるCLiSA - Cloudセグメンテーションという,効果的なクラウドマスク生成のためのディープラーニングモデルを提案する。
Landsat-8, Sentinel-2, Cartosat-2sを含む複数の衛星画像データセットの質的および定量的な結果を示す。
論文 参考訳(メタデータ) (2023-11-29T09:31:31Z) - IceCloudNet: Cirrus and mixed-phase cloud prediction from SEVIRI input
learned from sparse supervision [26.970640961908032]
氷粒子は気候システムにおいて重要な役割を担っているが、気候モデルや将来の気候予測において大きな不確実性の原因となっている。
本研究では,静止衛星観測装置における状態依存型氷物理特性の新たな観測制約と,アクティブ衛星検索の品質について述べる。
論文 参考訳(メタデータ) (2023-10-05T12:24:25Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
生成事前学習は、2次元視覚における基本モデルの性能を高めることができる。
3Dビジョンでは、トランスフォーマーベースのバックボーンの過度な信頼性と、点雲の秩序のない性質により、生成前のトレーニングのさらなる発展が制限されている。
本稿では,任意の点クラウドモデルに適用可能な3D-to-2D生成事前学習法を提案する。
論文 参考訳(メタデータ) (2023-07-27T16:07:03Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
ネットワークが異なる気象条件を適応的に処理できるようにするために,CLIP埋め込みモジュールを提案する。
このモジュールは、CLIP画像エンコーダによって抽出されたサンプル特定気象と、パラメータセットによって学習された分布特定情報を統合する。
論文 参考訳(メタデータ) (2023-06-15T10:06:13Z) - MM811 Project Report: Cloud Detection and Removal in Satellite Images [0.0]
我々は,アテンションGANを用いて衛星画像から雲を除去することを目的としている。
従来のGANとオートエンコーダを用いて得られた結果を再現して比較した。
このプロジェクトの結果は、クラウドフリーの衛星画像を必要とするアプリケーションの開発に利用できる。
論文 参考訳(メタデータ) (2022-12-21T21:14:35Z) - Boosting Point Clouds Rendering via Radiance Mapping [49.24193509772339]
コンパクトなモデル設計でポイントクラウドレンダリングの画質向上に重点を置いている。
我々はNeRF表現を1ピクセルあたりの単一評価しか必要としない空間マッピング関数に単純化する。
提案手法は点雲上での最先端のレンダリングを実現し,先行研究を顕著なマージンで上回った。
論文 参考訳(メタデータ) (2022-10-27T01:25:57Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。