論文の概要: Removing cloud shadows from ground-based solar imagery
- arxiv url: http://arxiv.org/abs/2407.13379v1
- Date: Thu, 18 Jul 2024 10:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:40:38.493706
- Title: Removing cloud shadows from ground-based solar imagery
- Title(参考訳): 地上の太陽画像から雲の影を除去する
- Authors: Amal Chaoui, Jay Paul Morgan, Adeline Paiement, Jean Aboudarham,
- Abstract要約: 本稿では,U-Netアーキテクチャに基づくクラウドシャドウの除去手法を提案し,古典的監視と条件付きGANを比較した。
我々は,実画像と合成雲の新しいデータセットを用いて,2つの異なる画像モダリティについて評価を行った。
- 参考スコア(独自算出の注目度): 0.33748750222488655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study and prediction of space weather entails the analysis of solar images showing structures of the Sun's atmosphere. When imaged from the Earth's ground, images may be polluted by terrestrial clouds which hinder the detection of solar structures. We propose a new method to remove cloud shadows, based on a U-Net architecture, and compare classical supervision with conditional GAN. We evaluate our method on two different imaging modalities, using both real images and a new dataset of synthetic clouds. Quantitative assessments are obtained through image quality indices (RMSE, PSNR, SSIM, and FID). We demonstrate improved results with regards to the traditional cloud removal technique and a sparse coding baseline, on different cloud types and textures.
- Abstract(参考訳): 宇宙気象の研究と予測は、太陽の大気の構造を示す太陽画像の分析を必要とする。
地球の地上から撮影された画像は、太陽構造の検出を妨げる地上の雲によって汚染される可能性がある。
本稿では,U-Netアーキテクチャに基づくクラウドシャドウの除去手法を提案し,古典的監視と条件付きGANを比較した。
我々は,実画像と合成雲の新しいデータセットを用いて,2つの異なる画像モダリティについて評価を行った。
画像品質指標(RMSE, PSNR, SSIM, FID)を用いて定量的評価を行った。
クラウドの種類やテクスチャによって,従来のクラウド除去技術と疎結合なコーディングベースラインに関して,改良された結果を示す。
関連論文リスト
- Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [77.17812978009738]
影のパターンは任意で変化しており、しばしば非常に複雑な痕跡構造を持つ。
影による劣化は空間的に不均一であり、照度と影と非陰影領域間の色に矛盾が生じている。
この分野での最近の開発は、主にディープラーニングベースのソリューションによって進められている。
論文 参考訳(メタデータ) (2024-07-11T20:58:38Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
本稿では,少数の画像から点雲を再構成し,そのレンダリングから点雲を識別する手法を提案する。
制約条件下での再構成を改善するため,ハイブリッド表面と外観の相違点のトレーニングを規則化する。
これらの学習したフィルタを使って、3Dの監督なしに来る点雲ノイズを除去する方法を実証する。
論文 参考訳(メタデータ) (2024-04-01T13:38:16Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
雲除去のための反復拡散過程(IDF-CR)を提案する。
IDF-CRは、ピクセル空間と潜在空間に対処する2段階のモデルに分けられる。
潜時空間の段階では、拡散モデルは低品質の雲の除去を高品質のクリーンな出力に変換する。
論文 参考訳(メタデータ) (2024-03-18T15:23:48Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
ディープラーニングアルゴリズムは画像セグメンテーション問題を解決するための有望なアプローチとして登場してきた。
本稿では,Lipschitz Stable Attention NetworkによるCLiSA - Cloudセグメンテーションという,効果的なクラウドマスク生成のためのディープラーニングモデルを提案する。
Landsat-8, Sentinel-2, Cartosat-2sを含む複数の衛星画像データセットの質的および定量的な結果を示す。
論文 参考訳(メタデータ) (2023-11-29T09:31:31Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
ネットワークが異なる気象条件を適応的に処理できるようにするために,CLIP埋め込みモジュールを提案する。
このモジュールは、CLIP画像エンコーダによって抽出されたサンプル特定気象と、パラメータセットによって学習された分布特定情報を統合する。
論文 参考訳(メタデータ) (2023-06-15T10:06:13Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
本稿では,新しいアテンションベースアーキテクチャを組み合わせたマルチテンポラルクラウド除去手法UnCRtainTSを紹介する。
予測された不確かさがいかにして再現品質を正確に制御できるかを示す。
論文 参考訳(メタデータ) (2023-04-11T19:27:18Z) - See Blue Sky: Deep Image Dehaze Using Paired and Unpaired Training
Images [73.23687409870656]
本稿では,新しいエンドツーエンド画像デヘイズモデルを構築するために,サイクル生成対向ネットワークを提案する。
我々は、実世界の未ペア画像データセットとペア画像データセットのセットを含む、私たちのモデルをトレーニングするために、屋外画像データセットを採用しています。
本モデルでは, サイクル構造に基づいて, 対向損失, サイクル整合損失, フォトリアリズム損失, ペアL1損失を含む4種類の損失関数を付加した。
論文 参考訳(メタデータ) (2022-10-14T07:45:33Z) - Seeing Through Clouds in Satellite Images [14.84582204034532]
本稿では,衛星画像中の雲に隠されたピクセルを回復するためのニューラルネットワークベースのソリューションを提案する。
我々は、雲を貫通する超高周波数帯の電波周波数(RF)信号を活用し、マルチスペクトル画像における隠蔽領域の再構成を支援する。
論文 参考訳(メタデータ) (2021-06-15T20:01:27Z) - Enhancing Photorealism Enhancement [83.88433283714461]
本稿では,畳み込みネットワークを用いた合成画像のリアリズム向上手法を提案する。
一般的に使用されるデータセットのシーンレイアウトの分布を分析し、重要な方法で異なることを見つけます。
近年のイメージ・ツー・イメージ翻訳法と比較して,安定性とリアリズムの大幅な向上が報告されている。
論文 参考訳(メタデータ) (2021-05-10T19:00:49Z) - Cloud removal in remote sensing images using generative adversarial
networks and SAR-to-optical image translation [0.618778092044887]
雲の除去は、幅広い衛星画像の応用により、多くの注目を集めている。
本研究では,2つの生成逆ネットワーク(GAN)を用いてこの問題の解決を試みる。
第1はSAR画像を光学画像に変換し、第2は前GANの変換画像を使用して雲を除去する。
論文 参考訳(メタデータ) (2020-12-22T17:19:14Z) - Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization [3.65794756599491]
リモートセンシング画像では、雲の影に付随する厚い雲の存在が確率の高い事象である。
時間的滑らか度と空間規則化テンソル最適化に基づくリモートセンシング画像の高密度クラウド除去手法を提案する。
論文 参考訳(メタデータ) (2020-08-11T05:59:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。