Modeling COVID-19 spread in the USA using metapopulation SIR models coupled with graph convolutional neural networks
- URL: http://arxiv.org/abs/2501.02043v1
- Date: Fri, 03 Jan 2025 18:06:26 GMT
- Title: Modeling COVID-19 spread in the USA using metapopulation SIR models coupled with graph convolutional neural networks
- Authors: Petr Kisselev, Padmanabhan Seshaiyer,
- Abstract summary: Graph convolutional neural networks (GCNs) have shown tremendous promise in addressing data-intensive challenges.
Some attempts have been made to improve predictions of Susceptible-Infected-Recovered (SIR) models by incorporating human mobility between metapopulations.
Recently, researchers have found that a hybrid GCN-SIR approach outperformed existing methodologies when used on the data collected on a precinct level in Japan.
- Score: 0.0
- License:
- Abstract: Graph convolutional neural networks (GCNs) have shown tremendous promise in addressing data-intensive challenges in recent years. In particular, some attempts have been made to improve predictions of Susceptible-Infected-Recovered (SIR) models by incorporating human mobility between metapopulations and using graph approaches to estimate corresponding hyperparameters. Recently, researchers have found that a hybrid GCN-SIR approach outperformed existing methodologies when used on the data collected on a precinct level in Japan. In our work, we extend this approach to data collected from the continental US, adjusting for the differing mobility patterns and varying policy responses. We also develop the strategy for real-time continuous estimation of the reproduction number and study the accuracy of model predictions for the overall population as well as individual states. Strengths and limitations of the GCN-SIR approach are discussed as a potential candidate for modeling disease dynamics.
Related papers
- Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response [41.94295877935867]
We build upon a spatially and demographically resolved infectious disease model and train a graph neural network for data sets representing early phases of the pandemic.
The suggested approach yields potential for on-the-fly execution and, thus, integration of disease dynamics models in low-barrier website applications.
arXiv Detail & Related papers (2024-11-10T15:54:09Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - A novel approach for predicting epidemiological forecasting parameters
based on real-time signals and Data Assimilation [3.4901787251083163]
We implement an ensemble of Convolutional Neural Networks (CNN) models using various data sources and fusion methodology to build robust predictions.
The combination of meteorological signals and social media-based population density maps improved the performance and flexibility of our prediction of the COVID-19 outbreak in London.
arXiv Detail & Related papers (2023-07-03T17:05:29Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural
Networks [8.949096210063662]
In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data.
We evaluate this approach on the US county level COVID-19 dataset, and demonstrate that the rich spatial and temporal information leveraged by the graph neural network allows the model to learn complex dynamics.
arXiv Detail & Related papers (2020-07-06T23:11:38Z) - An Epidemiological Modelling Approach for Covid19 via Data Assimilation [18.837659009007705]
The global pandemic of the 2019-nCov requires the evaluation of policy interventions to mitigate future social and economic costs of quarantine measures worldwide.
We propose an epidemiological model for forecasting and policy evaluation which incorporates new data in real-time through variational data assimilation.
arXiv Detail & Related papers (2020-04-25T12:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.