論文の概要: Applying Text Mining to Analyze Human Question Asking in Creativity Research
- arxiv url: http://arxiv.org/abs/2501.02090v1
- Date: Fri, 03 Jan 2025 20:28:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:45.101455
- Title: Applying Text Mining to Analyze Human Question Asking in Creativity Research
- Title(参考訳): クリエイティビティ研究におけるテキストマイニングによる質問応答の分析
- Authors: Anna Wróblewska, Marceli Korbin, Yoed N. Kenett, Daniel Dan, Maria Ganzha, Marcin Paprzycki,
- Abstract要約: 本研究は,質問の認知可能性を測定するためにテキストマイニング手法を適用しようとする試みである。
このコントリビューションは、創造性研究の一部としての質問マイニングの歴史と、この研究で有用または有用と考えられる自然言語処理手法をまとめたものである。
- 参考スコア(独自算出の注目度): 0.059374762912328
- License:
- Abstract: Creativity relates to the ability to generate novel and effective ideas in the areas of interest. How are such creative ideas generated? One possible mechanism that supports creative ideation and is gaining increased empirical attention is by asking questions. Question asking is a likely cognitive mechanism that allows defining problems, facilitating creative problem solving. However, much is unknown about the exact role of questions in creativity. This work presents an attempt to apply text mining methods to measure the cognitive potential of questions, taking into account, among others, (a) question type, (b) question complexity, and (c) the content of the answer. This contribution summarizes the history of question mining as a part of creativity research, along with the natural language processing methods deemed useful or helpful in the study. In addition, a novel approach is proposed, implemented, and applied to five datasets. The experimental results obtained are comprehensively analyzed, suggesting that natural language processing has a role to play in creative research.
- Abstract(参考訳): 創造性は、興味のある領域において、新しく効果的なアイデアを生み出す能力に関係している。
このような創造的なアイデアはどのように生成されますか?
創造的なアイデアを支持し、経験的注目を集めているメカニズムの1つは、質問を行うことである。
質問は、問題を定義し、創造的な問題解決を促進するための、おそらく認知的なメカニズムである。
しかし、クリエイティビティにおける質問の正確な役割について、多くのことは分かっていない。
本研究は、テキストマイニング手法を用いて、質問の認知可能性を測定し、考慮する試みである。
(a)質問タイプ
(b)複雑さを問う、そして
c) 回答の内容。
このコントリビューションは、創造性研究の一部としての質問マイニングの歴史と、この研究で有用または有用と考えられる自然言語処理手法をまとめたものである。
さらに、5つのデータセットに新しいアプローチを提案し、実装し、適用する。
得られた実験結果は総合的に分析され、自然言語処理が創造的な研究に果たす役割を示唆している。
関連論文リスト
- How to Engage Your Readers? Generating Guiding Questions to Promote Active Reading [60.19226384241482]
教科書や科学論文から10Kのインテキスト質問のデータセットであるGuidingQを紹介した。
言語モデルを用いてこのような質問を生成するための様々なアプローチを探索する。
我々は、そのような質問が読解に与える影響を理解するために、人間の研究を行う。
論文 参考訳(メタデータ) (2024-07-19T13:42:56Z) - Clarify When Necessary: Resolving Ambiguity Through Interaction with LMs [58.620269228776294]
そこで本稿では,ユーザに対して,あいまいさを解消するためのタスク非依存のフレームワークを提案する。
我々は3つのNLPアプリケーション(質問応答、機械翻訳、自然言語推論)にまたがるシステムを評価する。
インテントシムは堅牢であり、幅広いNLPタスクやLMの改善を実証している。
論文 参考訳(メタデータ) (2023-11-16T00:18:50Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Five Properties of Specific Curiosity You Didn't Know Curious Machines
Should Have [4.266866385061999]
我々は、動物と機械の好奇心の分野を包括的に多分野的に調査する。
我々は、特定の好奇心の最も重要な特性の5つのうちの1つと考えるものを紹介し、定義する。
概念強化学習エージェントにおいて,これらの特性をどのように組み合わせて実装するかを示す。
論文 参考訳(メタデータ) (2022-12-01T00:18:56Z) - An information-theoretic perspective on intrinsic motivation in
reinforcement learning: a survey [0.0]
本稿では,これらの研究成果を情報理論に基づく新たな分類法を用いて調査することを提案する。
我々は、サプライズ、ノベルティ、スキル学習の概念を計算的に再考する。
我々の分析は、新規性とサプライズがトランスファー可能なスキルの階層を構築するのに役立つことを示唆している。
論文 参考訳(メタデータ) (2022-09-19T09:47:43Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - DeepCreativity: Measuring Creativity with Deep Learning Techniques [2.5426469613007012]
本稿では,創造性の自動評価に生成学習技術を用いる可能性について検討する。
我々は、価値、ノベルティ、サプライズによって構成される創造性の定義に基づいて、DeepCreativityという新しい尺度を導入する。
論文 参考訳(メタデータ) (2022-01-16T19:00:01Z) - Scientia Potentia Est -- On the Role of Knowledge in Computational
Argumentation [52.903665881174845]
本稿では,計算議論に必要な知識のピラミッドを提案する。
この分野におけるこれらのタイプの役割と統合について,その技術の現状を簡潔に論じる。
論文 参考訳(メタデータ) (2021-07-01T08:12:41Z) - Stay Hungry, Stay Focused: Generating Informative and Specific Questions
in Information-Seeking Conversations [41.74162467619795]
情報非対称な会話における情報的質問生成の問題について検討する。
実践的な質問を生成するために,情報量測定を最適化するために強化学習を用いる。
そこで本研究では,提案した実用的質問は,ベースラインモデル上で生成した質問の有意性と特異性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2020-04-30T00:49:14Z) - Knowledgeable Dialogue Reading Comprehension on Key Turns [84.1784903043884]
MRC(Multi-choice Machine reading comprehension)は、ある項目と質問に対する候補オプションから正しい回答を選択するモデルである。
本研究は,複数回対話を行う対話型MRCに焦点を当てている。
それは2つの課題に悩まされ、答えの選択決定は、最近役に立つコモンセンスをサポートせずに行われ、マルチターンコンテキストは、かなりの無関係な情報を隠蔽する可能性がある。
論文 参考訳(メタデータ) (2020-04-29T07:04:43Z) - GASP! Generating Abstracts of Scientific Papers from Abstracts of Cited
Papers [9.472227971923672]
本稿では,引用論文の要約(GASP)をテキスト・トゥ・テキスト・タスクとして,科学論文の要約を生成するという,新しい,科学的かつ哲学的な課題を紹介する。
論文 参考訳(メタデータ) (2020-02-28T14:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。