論文の概要: From Images to Detection: Machine Learning for Blood Pattern Classification
- arxiv url: http://arxiv.org/abs/2501.02151v1
- Date: Sat, 04 Jan 2025 00:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:06:16.335442
- Title: From Images to Detection: Machine Learning for Blood Pattern Classification
- Title(参考訳): 画像から検出へ:血液パターン分類のための機械学習
- Authors: Yilin Li, Weining Shen,
- Abstract要約: 血痕パターン分析(BPA)は、血痕の大きさ、形状、分布に焦点をあてて、血痕がどのように形成されるかを理解するのに役立つ。
BPAの課題の1つは、銃や衝撃、その他のメカニズムなど、さまざまな種類の血痕を区別することである。
本研究は, 銃創血痕パターンと飛散血痕パターンの鑑別に焦点をあてる。
- 参考スコア(独自算出の注目度): 2.4719114894437717
- License:
- Abstract: Bloodstain Pattern Analysis (BPA) helps us understand how bloodstains form, with a focus on their size, shape, and distribution. This aids in crime scene reconstruction and provides insight into victim positions and crime investigation. One challenge in BPA is distinguishing between different types of bloodstains, such as those from firearms, impacts, or other mechanisms. Our study focuses on differentiating impact spatter bloodstain patterns from gunshot bloodstain patterns. We distinguish patterns by extracting well-designed individual stain features, applying effective data consolidation methods, and selecting boosting classifiers. As a result, we have developed a model that excels in both accuracy and efficiency. In addition, we use outside data sources from previous studies to discuss the challenges and future directions for BPA.
- Abstract(参考訳): 血痕パターン分析(BPA)は、血痕の大きさ、形状、分布に焦点をあてて、血痕がどのように形成されるかを理解するのに役立つ。
これは犯罪現場の再建を支援し、被害者の位置や犯罪捜査に関する洞察を提供する。
BPAの課題の1つは、銃や衝撃、その他のメカニズムなど、さまざまな種類の血痕を区別することである。
本研究は, 銃創血痕パターンと飛散血痕パターンの鑑別に焦点をあてる。
我々は、よく設計された個々の染色特徴を抽出し、効果的なデータ統合手法を適用し、ブーピング分類器を選択することでパターンを識別する。
その結果,精度と効率を両立させるモデルを開発した。
さらに,BPAの課題と今後の方向性を議論するために,過去の研究から外部データソースを用いている。
関連論文リスト
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - A data balancing approach towards design of an expert system for Heart Disease Prediction [0.9895793818721335]
心臓病は深刻な世界的な健康問題で、毎年何百万人もの命がかかっています。
本稿では,決定木(DT),ランダムフォレスト(RF),線形判別分析,エクストラツリーブースト,アダブーストという5つの機械学習手法を用いた。
ランダムフォレストと決定木モデルの精度は99.83%だった。
論文 参考訳(メタデータ) (2024-07-26T08:56:13Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - Dual Conditioned Diffusion Models for Out-Of-Distribution Detection:
Application to Fetal Ultrasound Videos [9.194340639317401]
機械学習モデルの信頼性を向上させるためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
本稿では,分散クラス情報にモデルを適用した二条件拡散モデル(DCDM)を提案する。
これは、モデルの生成多様体を制約し、構造的および意味論的に、分布内にあるものに似た画像を生成する。
論文 参考訳(メタデータ) (2023-11-01T12:10:55Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Understanding, Detecting, and Separating Out-of-Distribution Samples and
Adversarial Samples in Text Classification [80.81532239566992]
本稿では,2種類の異常 (OOD と Adv のサンプル) と,3つの側面の内分布 (ID) を比較した。
OODサンプルは第1層から始まる収差を露呈するが,Advサンプルの異常はモデル深層まで出現しない。
隠れ表現と出力確率を用いて,ID,OOD,Advのサンプルを分離する簡単な手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T12:11:59Z) - Algorithmic encoding of protected characteristics and its implications
on disparities across subgroups [17.415882865534638]
機械学習モデルは、患者の人種的アイデンティティと臨床結果の間に望ましくない相関関係を拾うことができる。
これらのバイアスがどのようにコード化され、どのように異なるパフォーマンスを減らしたり、取り除いたりするかについては、ほとんど分かっていない。
論文 参考訳(メタデータ) (2021-10-27T20:30:57Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。
我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。
我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T06:55:02Z) - Out-of-Distribution Detection in Dermatology using Input Perturbation
and Subset Scanning [5.674998177844528]
現在の皮膚疾患モデルでは、異なるハードウェアデバイスや臨床機器からの検査サンプルの誤った推測が可能である。
決定に先立って,これらのOODサンプルを簡易かつ効果的に検出する手法を提案する。
論文 参考訳(メタデータ) (2021-05-24T09:04:47Z) - Mixture Model Framework for Traumatic Brain Injury Prognosis Using
Heterogeneous Clinical and Outcome Data [3.7363119896212478]
TBIに関連する大きな異種データ型をモデル化する手法を開発する。
このモデルは、人口統計、血液ベースのバイオマーカー、画像検出など、さまざまなデータタイプを含むデータセットでトレーニングされます。
教師なしの学習環境で患者を別々のグループに成層するために使用されます。
論文 参考訳(メタデータ) (2020-12-22T19:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。