Table as Thought: Exploring Structured Thoughts in LLM Reasoning
- URL: http://arxiv.org/abs/2501.02152v1
- Date: Sat, 04 Jan 2025 00:58:06 GMT
- Title: Table as Thought: Exploring Structured Thoughts in LLM Reasoning
- Authors: Zhenjie Sun, Naihao Deng, Haofei Yu, Jiaxuan You,
- Abstract summary: Large language models' reasoning abilities benefit from methods that organize their thought processes.<n>Existing approaches focus primarily on organizing the sequence of thoughts, leaving structure in individual thought steps underexplored.<n>We propose Table as Thought, a framework inspired by cognitive neuroscience theories on human thought.
- Score: 14.901120719649315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models' reasoning abilities benefit from methods that organize their thought processes, such as chain-of-thought prompting, which employs a sequential structure to guide the reasoning process step-by-step. However, existing approaches focus primarily on organizing the sequence of thoughts, leaving structure in individual thought steps underexplored. To address this gap, we propose Table as Thought, a framework inspired by cognitive neuroscience theories on human thought. Table as Thought organizes reasoning within a tabular schema, where rows represent sequential thought steps and columns capture critical constraints and contextual information to enhance reasoning. The reasoning process iteratively populates the table until self-verification ensures completeness and correctness. Our experiments show that Table as Thought excels in planning tasks and demonstrates a strong potential for enhancing LLM performance in mathematical reasoning compared to unstructured thought baselines. This work provides a novel exploration of refining thought representation within LLMs, paving the way for advancements in reasoning and AI cognition.
Related papers
- A Survey on Latent Reasoning [100.54120559169735]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities.<n>CoT reasoning that verbalizes intermediate steps limits the model's expressive bandwidth.<n>Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state.
arXiv Detail & Related papers (2025-07-08T17:29:07Z) - Reason from Future: Reverse Thought Chain Enhances LLM Reasoning [18.637191592875155]
We propose a novel reasoning paradigm called Reason from Future (RFF)<n>RFF generates reasoning paths by bidirectional reasoning that combines top-down planning with bottom-up reasoning accumulation.<n>RFF outperforms conventional paradigms with higher accuracy and less searching space to solve complex tasks.
arXiv Detail & Related papers (2025-06-04T08:03:17Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - VisuoThink: Empowering LVLM Reasoning with Multimodal Tree Search [89.43196232124883]
VisuoThink is a novel framework that seamlessly integrates visuospatial and linguistic domains.
It enables progressive visual-textual reasoning and incorporates test-time scaling through look-ahead tree search.
arXiv Detail & Related papers (2025-04-12T08:37:30Z) - Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
We introduce thought-tracing, an inference-time reasoning algorithm to trace the mental states of agents.
Our algorithm is modeled after the Bayesian theory-of-mind framework.
We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements.
arXiv Detail & Related papers (2025-02-17T15:08:50Z) - Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs [86.79757571440082]
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks.
We identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts.
We propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts.
arXiv Detail & Related papers (2025-01-30T18:58:18Z) - PoTable: Towards Systematic Thinking via Stage-oriented Plan-then-Execute Reasoning on Tables [13.823024099178172]
PoTable is a stage-oriented plan-then-execute reasoning approach that achieves systematic thinking on tables.
PoTable can produce reliable table reasoning results with highly accurate, steply commented and completely executable programs.
arXiv Detail & Related papers (2024-12-05T15:54:16Z) - Thought Space Explorer: Navigating and Expanding Thought Space for Large Language Model Reasoning [15.918115880403152]
We design the Thought Space Explorer (TSE) to expand and optimize thought structures to guide large language models (LLMs) to explore their blind spots of thinking.
By generating new reasoning steps and branches based on the original thought structure with various designed strategies, TSE broadens the thought space and alleviates the impact of blind spots for LLM reasoning.
arXiv Detail & Related papers (2024-10-31T17:12:14Z) - On the Diagram of Thought [12.304069891580658]
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs)
DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways.
We formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process.
arXiv Detail & Related papers (2024-09-16T07:01:41Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - Demystifying Chains, Trees, and Graphs of Thoughts [20.980650840083385]
We focus on identifying fundamental classes of harnessed structures, and we analyze the representations of these structures.
Our study compares existing prompting schemes using the proposed taxonomy, discussing how certain design choices lead to different patterns in performance and cost.
arXiv Detail & Related papers (2024-01-25T16:34:00Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToM is a novel prompting framework inspired by Simulation Theory's notion of perspective-taking.
Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods.
arXiv Detail & Related papers (2023-11-16T22:49:27Z) - Why Can Large Language Models Generate Correct Chain-of-Thoughts? [10.888196404348093]
We introduce a two-level hierarchical graphical model tailored for natural language generation.
We establish a compelling geometrical convergence rate that gauges the likelihood of an LLM-generated chain of thoughts.
arXiv Detail & Related papers (2023-10-20T15:09:46Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play
Multi-Character Belief Tracker [72.09076317574238]
ToM is a plug-and-play approach to investigate the belief states of characters in reading comprehension.
We show that ToM enhances off-the-shelf neural network theory mind in a zero-order setting while showing robust out-of-distribution performance compared to supervised baselines.
arXiv Detail & Related papers (2023-06-01T17:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.