Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models
- URL: http://arxiv.org/abs/2411.07820v2
- Date: Wed, 13 Nov 2024 05:43:58 GMT
- Title: Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models
- Authors: Youan Cong, Cheng Wang, Pritom Saha Akash, Kevin Chen-Chuan Chang,
- Abstract summary: The Extract-Refine-Retrieve-Read (ERRR) framework is designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems.
Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting knowledge from Large Language Models (LLMs)
- Score: 26.353428245346166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Extract-Refine-Retrieve-Read (ERRR) framework, a novel approach designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems through query optimization tailored to meet the specific knowledge requirements of Large Language Models (LLMs). Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting parametric knowledge from LLMs, followed by using a specialized query optimizer for refining these queries. This process ensures the retrieval of only the most pertinent information essential for generating accurate responses. Moreover, to enhance flexibility and reduce computational costs, we propose a trainable scheme for our pipeline that utilizes a smaller, tunable model as the query optimizer, which is refined through knowledge distillation from a larger teacher model. Our evaluations on various question-answering (QA) datasets and with different retrieval systems show that ERRR consistently outperforms existing baselines, proving to be a versatile and cost-effective module for improving the utility and accuracy of RAG systems.
Related papers
- Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.
Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.
We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses [0.0]
ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG)
We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts.
We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization.
arXiv Detail & Related papers (2025-03-23T17:26:23Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.
Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.
We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit [46.37267466656765]
This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture.
Our experiments demonstrate how this architecture effectively decreases time without sacrificing the accuracy needed for reliable recommendation delivery.
arXiv Detail & Related papers (2025-01-04T03:26:46Z) - A Survey of Query Optimization in Large Language Models [10.255235456427037]
RAG mitigates the limitations of Large Language Models by dynamically retrieving and leveraging up-to-date relevant information.
QO has emerged as a critical element, playing a pivotal role in determining the effectiveness of RAG's retrieval stage.
arXiv Detail & Related papers (2024-12-23T13:26:04Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Leveraging Retrieval-Augmented Generation for University Knowledge Retrieval [2.749898166276854]
This paper introduces an innovative approach using Retrieval-Augmented Generation (RAG) pipelines with Large Language Models (LLMs)
By systematically extracting data from the university official webpage, we generate accurate, contextually relevant responses to user queries.
Our experimental results demonstrate significant improvements in the precision and relevance of generated responses.
arXiv Detail & Related papers (2024-11-09T17:38:01Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.
This paper introduces RLRF4Rec, a novel framework integrating Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking.
arXiv Detail & Related papers (2024-10-08T11:42:37Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
We propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively.
We show that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10.
arXiv Detail & Related papers (2024-09-17T05:59:32Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
Current Sequential Recommender Systems (SRSs) suffer from computational and resource inefficiencies.
We develop the Elastic Architecture Search for Efficient Long-term Sequential Recommender Systems (EASRec)
EASRec introduces data-aware gates that leverage historical information from input data batch to improve the performance of the recommendation network.
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - Roq: Robust Query Optimization Based on a Risk-aware Learned Cost Model [3.0784574277021406]
We propose a holistic framework that enables robust query optimization based on a risk-aware learning approach.
Roq includes a novel formalization of the notion of robustness in the context of query optimization.
We demonstrate experimentally that Roq provides significant improvements to robust query optimization compared to the state-of-the-art.
arXiv Detail & Related papers (2024-01-26T21:16:37Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
We learn a model of the reward function that allows standard RL algorithms to achieve high expected return with as few expert queries as possible.
In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types.
We support our findings with extensive evaluations in multiple environments and with different types of queries.
arXiv Detail & Related papers (2021-02-24T18:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.