Phase Retrieval by Quaternionic Reweighted Amplitude Flow on Image Reconstruction
- URL: http://arxiv.org/abs/2501.02180v1
- Date: Sat, 04 Jan 2025 04:09:57 GMT
- Title: Phase Retrieval by Quaternionic Reweighted Amplitude Flow on Image Reconstruction
- Authors: Ren Hu, Pan Lian,
- Abstract summary: Quaternionic signal processing provides powerful tools for efficiently managing color signals.
We address the quaternionic phase retrieval problem by systematically developing novel algorithms based on an amplitude-based model.
Our proposed methods significantly improve recovery performance and computational efficiency compared to state-of-the-art approaches.
- Score: 0.0
- License:
- Abstract: Quaternionic signal processing provides powerful tools for efficiently managing color signals by preserving the intrinsic correlations among signal dimensions through quaternion algebra. In this paper, we address the quaternionic phase retrieval problem by systematically developing novel algorithms based on an amplitude-based model. Specifically, we propose the Quaternionic Reweighted Amplitude Flow (QRAF) algorithm, which is further enhanced by three of its variants: incremental, accelerated, and adapted QRAF algorithms. In addition, we introduce the Quaternionic Perturbed Amplitude Flow (QPAF) algorithm, which has linear convergence. Extensive numerical experiments on both synthetic data and real images, demonstrate that our proposed methods significantly improve recovery performance and computational efficiency compared to state-of-the-art approaches.
Related papers
- Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
We enhance the EPDE algorithm -- an evolutionary optimization-based discovery framework.
Our approach generates terms using fundamental building blocks such as elementary functions and individual differentials.
We validate our algorithm's noise resilience and overall performance by comparing its results with those from the state-of-the-art equation discovery framework SINDy.
arXiv Detail & Related papers (2024-12-28T15:58:44Z) - State-Free Inference of State-Space Models: The Transfer Function Approach [132.83348321603205]
State-free inference does not incur any significant memory or computational cost with an increase in state size.
We achieve this using properties of the proposed frequency domain transfer function parametrization.
We report improved perplexity in language modeling over a long convolutional Hyena baseline.
arXiv Detail & Related papers (2024-05-10T00:06:02Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Efficient Covariance Matrix Reconstruction with Iterative Spatial
Spectrum Sampling [0.0]
We propose a cost-effective technique for designing robust adaptive beamforming algorithms with iterative spatial power spectrum (CMR-ISPS)
The proposed CMR-ISPS approach reconstructs the interference-plus-noise covariance matrix based on a simplified maximum entropy power spectral density function.
The proposed CMR-ISPS beamformer can suppress interferers close to the direction of the signal of interest by producing notches in the directional response of the array with sufficient depths.
arXiv Detail & Related papers (2023-09-02T23:58:01Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers [7.1439425093981574]
We introduce a new class of iterative image reconstruction algorithms for radio interferometry, inspired by plug-and-play methods.
The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser.
We plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step.
arXiv Detail & Related papers (2022-02-25T20:26:33Z) - Unfolded Algorithms for Deep Phase Retrieval [16.14838937433809]
We propose a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval (UPR)
The proposed method benefits from versatility and interpretability of well-established model-based algorithms.
We consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process.
arXiv Detail & Related papers (2020-12-21T03:46:17Z) - STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame
Optical Flow Estimation [64.99259320624148]
We present a new lightweight CNN-based algorithm for multi-frame optical flow estimation.
The resulting STaRFlow algorithm gives state-of-the-art performances on MPI Sintel and Kitti2015.
arXiv Detail & Related papers (2020-07-10T17:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.