Robust Multi-Dimensional Scaling via Accelerated Alternating Projections
- URL: http://arxiv.org/abs/2501.02208v1
- Date: Sat, 04 Jan 2025 06:28:10 GMT
- Title: Robust Multi-Dimensional Scaling via Accelerated Alternating Projections
- Authors: Tong Deng, Tianming Wang,
- Abstract summary: We consider the robust multi-dimensional (RMDS) problem in this paper.
Inspired by classic MDSA theories, we propose an alternating projection technique.
- Score: 5.778024594615575
- License:
- Abstract: We consider the robust multi-dimensional scaling (RMDS) problem in this paper. The goal is to localize point locations from pairwise distances that may be corrupted by outliers. Inspired by classic MDS theories, and nonconvex works for the robust principal component analysis (RPCA) problem, we propose an alternating projection based algorithm that is further accelerated by the tangent space projection technique. For the proposed algorithm, if the outliers are sparse enough, we can establish linear convergence of the reconstructed points to the original points after centering and rotation alignment. Numerical experiments verify the state-of-the-art performances of the proposed algorithm.
Related papers
- Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization [7.114174944371803]
The problem of finding suitable point embedding Euclidean distance information point pairs arises both as a core task and as a sub-machine learning learning problem.
In this paper, we aim to solve this problem given a minimal number of samples.
arXiv Detail & Related papers (2024-10-22T13:02:12Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - Yet Another Algorithm for Supervised Principal Component Analysis:
Supervised Linear Centroid-Encoder [1.2487990897680423]
We propose a new supervised dimensionality reduction technique called Supervised Linear Centroid-Encoder (SLCE)
SLCE works by mapping the samples of a class to its class centroid using a linear transformation.
arXiv Detail & Related papers (2023-06-07T17:52:29Z) - Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality
Loss, and Algorithms [4.0295993947651025]
We introduce the "incenter" concept, a new notion akin to circumcenter recently proposed by Besbes et al.
We propose a novel loss function called Augmented Suboptimality Loss (ASL), a relaxation of the incenter concept for problems with inconsistent data.
This algorithm combines approximate subgradient evaluations, together with mirror descent update steps, which is provably efficient for the IO problems with discrete feasible sets with high cardinality.
arXiv Detail & Related papers (2023-05-12T18:58:08Z) - Decentralized Inexact Proximal Gradient Method With Network-Independent
Stepsizes for Convex Composite Optimization [39.352542703876104]
This paper considers decentralized convex composite optimization over undirected and connected networks.
A novel CTA (Combine-Then-Adapt)-based decentralized algorithm is proposed under uncoordinated network-independent constant stepsizes.
arXiv Detail & Related papers (2023-02-07T03:50:38Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.