論文の概要: Diffusion Model-Based Data Synthesis Aided Federated Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2501.02219v1
- Date: Sat, 04 Jan 2025 07:38:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:03.043191
- Title: Diffusion Model-Based Data Synthesis Aided Federated Semi-Supervised Learning
- Title(参考訳): 半教師付き学習を支援する拡散モデルに基づくデータ合成
- Authors: Zhongwei Wang, Tong Wu, Zhiyong Chen, Liang Qian, Yin Xu, Meixia Tao,
- Abstract要約: フェデレートされた半教師付き学習(FSSL)は、主にクライアント間でラベル付きデータの不足と、クライアント間でのデータの非独立性と同一の分散(非IID)という2つの要因によって挑戦されている。
本稿では,拡散モデルを用いたデータ合成支援FSSL (DDSA-FSSL) を提案する。
- 参考スコア(独自算出の注目度): 33.570347678194494
- License:
- Abstract: Federated semi-supervised learning (FSSL) is primarily challenged by two factors: the scarcity of labeled data across clients and the non-independent and identically distribution (non-IID) nature of data among clients. In this paper, we propose a novel approach, diffusion model-based data synthesis aided FSSL (DDSA-FSSL), which utilizes a diffusion model (DM) to generate synthetic data, bridging the gap between heterogeneous local data distributions and the global data distribution. In DDSA-FSSL, clients address the challenge of the scarcity of labeled data by employing a federated learning-trained classifier to perform pseudo labeling for unlabeled data. The DM is then collaboratively trained using both labeled and precision-optimized pseudo-labeled data, enabling clients to generate synthetic samples for classes that are absent in their labeled datasets. This process allows clients to generate more comprehensive synthetic datasets aligned with the global distribution. Extensive experiments conducted on multiple datasets and varying non-IID distributions demonstrate the effectiveness of DDSA-FSSL, e.g., it improves accuracy from 38.46% to 52.14% on CIFAR-10 datasets with 10% labeled data.
- Abstract(参考訳): フェデレートされた半教師付き学習(FSSL)は、主にクライアント間でラベル付きデータの不足と、クライアント間でのデータの非独立性と同一の分散(非IID)という2つの要因によって挑戦されている。
本稿では,拡散モデルに基づくデータ合成支援FSSL (DDSA-FSSL) という新しい手法を提案する。
DDSA-FSSLにおいて、クライアントはラベルなしデータの擬似ラベリングを行うために、フェデレーション付き学習学習型分類器を用いてラベル付きデータの不足に対処する。
DMはラベル付きおよび精度最適化された擬似ラベル付きデータの両方を使用して協調的にトレーニングされ、クライアントはラベル付きデータセットに存在しないクラスの合成サンプルを生成することができる。
このプロセスにより、クライアントはグローバルな分布に合わせてより包括的な合成データセットを生成することができる。
複数のデータセットと様々な非IID分布で実施された大規模な実験はDDSA-FSSLの有効性を示し、例えば10%ラベル付きデータを持つCIFAR-10データセットの精度を38.46%から52.14%に向上させる。
関連論文リスト
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
現在の最先端のLTSSLアプローチは、大規模な未ラベルデータに対して高品質な擬似ラベルに依存している。
本稿では,長期学習における様々な提案を統一する新しい確率的枠組みを提案する。
我々は、信頼度とスムーズな擬似ラベルを用いて、我々のフレームワークをラベルなしデータに拡張する、連続的コントラスト学習手法であるCCLを導入する。
論文 参考訳(メタデータ) (2024-10-08T15:06:10Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
フェデレートラーニング(FL)は、分散的かつ協調的なモデルトレーニングのための有望なパラダイムである。
FLは、非独立分散(Non-IID)データ分散に直面すると、パフォーマンスの大幅な低下と収束性の低下に悩まされる。
我々は、最先端のテキスト・ツー・イメージ基盤モデルの強力な能力を活用する新しいアプローチであるGen-FedSDを紹介する。
論文 参考訳(メタデータ) (2024-05-13T16:57:48Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Navigating Data Heterogeneity in Federated Learning A Semi-Supervised
Federated Object Detection [3.7398615061365206]
フェデレートラーニング(FL)は、分散データソース間でモデルをトレーニングするための強力なフレームワークとして登場した。
特に自動運転のようなアプリケーションでは、高品質なラベルや、IID以外のクライアントデータに制限がある。
クライアントがラベル付きデータを持っている間、ラベル付きデータがサーバにのみ存在するシナリオ用に設計された、先駆的なSSFODフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T01:40:28Z) - Exploring One-shot Semi-supervised Federated Learning with A Pre-trained Diffusion Model [40.83058938096914]
我々は,フェデレート拡散にインスパイアされた半教師付き協調学習法であるFedDISCを提案する。
まず、ラベル付きサーバデータのプロトタイプを抽出し、これらのプロトタイプを用いてクライアントデータの擬似ラベルを予測する。
各カテゴリについて、クラスタセントロイドとドメイン固有の表現を計算し、それらの分布のセマンティックおよびスタイリスティックな情報を表す。
これらの表現はサーバに送信され、事前にトレーニングされたデータを使用して、クライアントの分布に応じて合成データセットを生成し、その上でグローバルモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-05-06T14:22:33Z) - Distributed Traffic Synthesis and Classification in Edge Networks: A
Federated Self-supervised Learning Approach [83.2160310392168]
本稿では,多数の異種データセット上での自動トラフィック解析と合成を支援するFS-GANを提案する。
FS-GANは複数の分散ジェネレーティブ・アドバイサル・ネットワーク(GAN)から構成される
FS-GANは未知のサービスのデータを分類し、未知のタイプのトラフィック分布をキャプチャする合成サンプルを作成する。
論文 参考訳(メタデータ) (2023-02-01T03:23:11Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Federated Learning with GAN-based Data Synthesis for Non-IID Clients [8.304185807036783]
フェデレートラーニング(FL)は、最近、プライバシ保護のためのコラボレーティブラーニングパラダイムとして人気を博している。
我々は,合成データを共有することで,この非IID課題を解決するために,SDA-FL(Synthetic Data Aided Federated Learning)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-11T11:43:25Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。