論文の概要: DiffGraph: Heterogeneous Graph Diffusion Model
- arxiv url: http://arxiv.org/abs/2501.02313v1
- Date: Sat, 04 Jan 2025 15:30:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:36.445188
- Title: DiffGraph: Heterogeneous Graph Diffusion Model
- Title(参考訳): DiffGraph: 異種グラフ拡散モデル
- Authors: Zongwei Li, Lianghao Xia, Hua Hua, Shijie Zhang, Shuangyang Wang, Chao Huang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データモデリングに革命をもたらしたが、従来のGNNは、現実のシナリオで一般的な複雑な異種構造に苦戦している。
異種グラフ拡散モデル(DiffGraph)は,革新的なクロスビュー・デノベーション・ストラテジーを導入した先駆的なフレームワークである。
中心となるDiffGraphは、高度な遅延不均一グラフ拡散機構を備え、優れたノイズ管理のための新しい前方および後方拡散プロセスを実装している。
- 参考スコア(独自算出の注目度): 16.65576765238224
- License:
- Abstract: Recent advances in Graph Neural Networks (GNNs) have revolutionized graph-structured data modeling, yet traditional GNNs struggle with complex heterogeneous structures prevalent in real-world scenarios. Despite progress in handling heterogeneous interactions, two fundamental challenges persist: noisy data significantly compromising embedding quality and learning performance, and existing methods' inability to capture intricate semantic transitions among heterogeneous relations, which impacts downstream predictions. To address these fundamental issues, we present the Heterogeneous Graph Diffusion Model (DiffGraph), a pioneering framework that introduces an innovative cross-view denoising strategy. This advanced approach transforms auxiliary heterogeneous data into target semantic spaces, enabling precise distillation of task-relevant information. At its core, DiffGraph features a sophisticated latent heterogeneous graph diffusion mechanism, implementing a novel forward and backward diffusion process for superior noise management. This methodology achieves simultaneous heterogeneous graph denoising and cross-type transition, while significantly simplifying graph generation through its latent-space diffusion capabilities. Through rigorous experimental validation on both public and industrial datasets, we demonstrate that DiffGraph consistently surpasses existing methods in link prediction and node classification tasks, establishing new benchmarks for robustness and efficiency in heterogeneous graph processing. The model implementation is publicly available at: https://github.com/HKUDS/DiffGraph.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の最近の進歩は、グラフ構造化データモデリングに革命をもたらしている。
不均一な相互作用の処理の進歩にもかかわらず、2つの基本的な課題は続く: ノイズの多いデータは埋め込み品質と学習性能を著しく妥協し、既存の手法では、下流の予測に影響を及ぼす不均一な関係間の複雑な意味的遷移をキャプチャできない。
これらの根本的な問題に対処するために、革新的なクロスビュー・デノベーション・ストラテジーを導入する先駆的なフレームワークである不均一グラフ拡散モデル(DiffGraph)を紹介します。
この高度なアプローチは、補助的異種データをターゲット意味空間に変換し、タスク関連情報の正確な蒸留を可能にする。
中心となるDiffGraphは、高度な遅延不均一グラフ拡散機構を備え、優れたノイズ管理のための新しい前方および後方拡散プロセスを実装している。
この手法はグラフ生成を潜在空間拡散能力によって著しく単純化し, 同時ヘテロジニアスグラフデノナイズとクロスタイプ遷移を実現する。
DiffGraphは、公開および産業両方のデータセットに対する厳密な検証を通じて、リンク予測やノード分類タスクにおける既存の手法を一貫して上回り、不均一なグラフ処理における堅牢性と効率性のための新しいベンチマークを確立することを実証する。
モデルの実装は、https://github.com/HKUDS/DiffGraphで公開されている。
関連論文リスト
- DeFoG: Discrete Flow Matching for Graph Generation [45.037260759871124]
グラフ生成のための離散フローマッチングを用いた新しいフレームワークであるDeFoGを提案する。
DeFoGはフローベースのアプローチを採用しており、効率的な線形雑音化プロセスと柔軟な雑音化プロセスを備えている。
我々は,DeFoGが合成および分子データセット上で最先端の結果を得ることを示す。
論文 参考訳(メタデータ) (2024-10-05T18:52:54Z) - When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
非教師付きヘテロジニアスグラフ表現学習(UHGRL)は,ラベルのない実用的なグラフを扱うことの重要性から注目されている。
我々はセマンティックなヘテロフィリーを定義し、この問題に対処するためにLatGRL(Latent Graphs Guided Unsupervised Representation Learning)と呼ばれる革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-01T10:25:06Z) - AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
グラフ基盤モデルは、グラフデータから堅牢で一般化可能な表現を学ぶ可能性を提供します。
本研究では,主要な課題に対処するために設計された統一グラフモデルであるAnyGraphについて検討する。
多様な38のグラフデータセットに対する実験は、AnyGraphの強力なゼロショット学習性能を実証した。
論文 参考訳(メタデータ) (2024-08-20T09:57:13Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
本稿では,グラフニューラルネットワーク (GNN) とGAN (Generative Adrial Network) を組み合わせた新しいフレームワークを提案する。
このフレームワークには高度なエッジ生成と選択モジュールが含まれており、合成ノードとエッジを同時に生成することができる。
論文 参考訳(メタデータ) (2023-12-11T16:52:20Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
グラフ拡散方程式は、様々なグラフトポロジーの存在下で、どのように外挿して一般化するかを示す。
本稿では,新たなグラフエンコーダのバックボーンであるAdvective Diffusion Transformer (ADiT)を提案する。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。