Understanding How Nonlinear Layers Create Linearly Separable Features for Low-Dimensional Data
- URL: http://arxiv.org/abs/2501.02364v1
- Date: Sat, 04 Jan 2025 19:43:21 GMT
- Title: Understanding How Nonlinear Layers Create Linearly Separable Features for Low-Dimensional Data
- Authors: Alec S. Xu, Can Yaras, Peng Wang, Qing Qu,
- Abstract summary: Deep neural networks have attained remarkable success across diverse classification tasks.
Recent empirical studies have shown that deep networks learn features that are linearly separable across classes.
This work bridges the gap between empirical observations and theoretical understanding of the separation capacity of nonlinear networks.
- Score: 7.0164889385584415
- License:
- Abstract: Deep neural networks have attained remarkable success across diverse classification tasks. Recent empirical studies have shown that deep networks learn features that are linearly separable across classes. However, these findings often lack rigorous justifications, even under relatively simple settings. In this work, we address this gap by examining the linear separation capabilities of shallow nonlinear networks. Specifically, inspired by the low intrinsic dimensionality of image data, we model inputs as a union of low-dimensional subspaces (UoS) and demonstrate that a single nonlinear layer can transform such data into linearly separable sets. Theoretically, we show that this transformation occurs with high probability when using random weights and quadratic activations. Notably, we prove this can be achieved when the network width scales polynomially with the intrinsic dimension of the data rather than the ambient dimension. Experimental results corroborate these theoretical findings and demonstrate that similar linear separation properties hold in practical scenarios beyond our analytical scope. This work bridges the gap between empirical observations and theoretical understanding of the separation capacity of nonlinear networks, offering deeper insights into model interpretability and generalization.
Related papers
- Minimum-Norm Interpolation Under Covariate Shift [14.863831433459902]
In-distribution research on high-dimensional linear regression has led to the identification of a phenomenon known as textitbenign overfitting
We prove the first non-asymptotic excess risk bounds for benignly-overfit linear interpolators in the transfer learning setting.
arXiv Detail & Related papers (2024-03-31T01:41:57Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
We show that each layer of a deep linear network progressively compresses within-class features at a geometric rate and discriminates between-class features at a linear rate.
This is the first quantitative characterization of feature evolution in hierarchical representations of deep linear networks.
arXiv Detail & Related papers (2023-11-06T09:00:38Z) - Understanding Deep Neural Networks via Linear Separability of Hidden
Layers [68.23950220548417]
We first propose Minkowski difference based linear separability measures (MD-LSMs) to evaluate the linear separability degree of two points sets.
We demonstrate that there is a synchronicity between the linear separability degree of hidden layer outputs and the network training performance.
arXiv Detail & Related papers (2023-07-26T05:29:29Z) - The Law of Parsimony in Gradient Descent for Learning Deep Linear
Networks [34.85235641812005]
We reveal a surprising "law of parsimony" in the learning dynamics when the data possesses low-dimensional structures.
This simplicity in learning dynamics could have significant implications for both efficient training and a better understanding of deep networks.
arXiv Detail & Related papers (2023-06-01T21:24:53Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs)
Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space.
This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs.
arXiv Detail & Related papers (2022-03-22T13:09:17Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
We show that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-$1$ matrices.
This is the first time a low-rank phenomenon is proven rigorously for nonlinear ReLU-activated feedforward networks.
Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence.
arXiv Detail & Related papers (2022-01-28T07:31:19Z) - Sparse Quantized Spectral Clustering [85.77233010209368]
We exploit tools from random matrix theory to make precise statements about how the eigenspectrum of a matrix changes under such nonlinear transformations.
We show that very little change occurs in the informative eigenstructure even under drastic sparsification/quantization.
arXiv Detail & Related papers (2020-10-03T15:58:07Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
We introduce an eigendecomposition-free approach to training a deep network.
We show that our approach is much more robust than explicit differentiation of the eigendecomposition.
Our method has better convergence properties and yields state-of-the-art results.
arXiv Detail & Related papers (2020-04-15T04:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.