論文の概要: Learning when to rank: Estimation of partial rankings from sparse, noisy comparisons
- arxiv url: http://arxiv.org/abs/2501.02505v1
- Date: Sun, 05 Jan 2025 11:04:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:06:21.631596
- Title: Learning when to rank: Estimation of partial rankings from sparse, noisy comparisons
- Title(参考訳): ランク付け時期の学習:疎度・雑音比較による部分ランク付けの推定
- Authors: Sebastian Morel-Balbi, Alec Kirkley,
- Abstract要約: 偏位を学習するための原理的ベイズ手法を開発した。
我々の枠組みはいかなる統計的ランキング法にも適応できる。
従来のランキングよりも、データの微妙な要約が提供される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A common task arising in various domains is that of ranking items based on the outcomes of pairwise comparisons, from ranking players and teams in sports to ranking products or brands in marketing studies and recommendation systems. Statistical inference-based methods such as the Bradley-Terry model, which extract rankings based on an underlying generative model of the comparison outcomes, have emerged as flexible and powerful tools to tackle the task of ranking in empirical data. In situations with limited and/or noisy comparisons, it is often challenging to confidently distinguish the performance of different items based on the evidence available in the data. However, existing inference-based ranking methods overwhelmingly choose to assign each item to a unique rank or score, suggesting a meaningful distinction when there is none. Here, we address this problem by developing a principled Bayesian methodology for learning partial rankings -- rankings with ties -- that distinguishes among the ranks of different items only when there is sufficient evidence available in the data. Our framework is adaptable to any statistical ranking method in which the outcomes of pairwise observations depend on the ranks or scores of the items being compared. We develop a fast agglomerative algorithm to perform Maximum A Posteriori (MAP) inference of partial rankings under our framework and examine the performance of our method on a variety of real and synthetic network datasets, finding that it frequently gives a more parsimonious summary of the data than traditional ranking, particularly when observations are sparse.
- Abstract(参考訳): 諸藩で共通する課題は、スポーツにおけるランキング選手やチームからマーケティング研究やレコメンデーションシステムにおける製品やブランドまで、相互比較の結果に基づく項目のランク付けである。
比較結果の生成モデルに基づいてランキングを抽出するBradley-Terryモデルのような統計的推論に基づく手法は、経験的データにおけるランキングの課題に取り組むための柔軟で強力なツールとして現れてきた。
限られた/または騒々しい比較の状況では、データから得られる証拠に基づいて、異なる項目のパフォーマンスを確実に区別することはしばしば困難である。
しかし、既存の推論に基づくランキング法では、各項目を独自のランクやスコアに割り当てることが圧倒的に多いため、存在しない場合に意味のある区別が示唆される。
ここでは、データに十分な証拠がある場合にのみ、異なる項目のランクを区別する、偏位(関係のあるランク)を学習するための原理的ベイズ手法を開発することで、この問題に対処する。
我々の枠組みは、比較対象のランクやスコアに依存する、任意の統計的ランク付け手法に適用可能である。
筆者らは,本フレームワーク下で部分的ランク付けを最大A Posteriori (MAP) で推定する高速な集計アルゴリズムを開発し,様々な実・合成ネットワークデータセット上での手法の性能について検討した。
関連論文リスト
- Replace Scoring with Arrangement: A Contextual Set-to-Arrangement
Framework for Learning-to-Rank [40.81502990315285]
ラーニング・トゥ・ランク(Learning-to-rank)は、トップNレコメンデーションタスクの中核的なテクニックであり、理想的なランク付けはアイテムからアレンジへのマッピングである。
既存のソリューションのほとんどは確率的ランキング原理(PRP)のパラダイムに該当する。すなわち、まず候補セットで各項目をスコアし、次にソート操作を行い、トップランキングリストを生成する。
本稿では,個別のスコアリングやソートを必要とせずに,候補項目の順列を直接生成する新しいフレームワークであるSet-To-Arrangement Ranking (STARank)を提案する。
論文 参考訳(メタデータ) (2023-08-05T12:22:26Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Integrating Rankings into Quantized Scores in Peer Review [61.27794774537103]
ピアレビューでは、レビュアーは通常、論文のスコアを提供するように求められます。
この問題を軽減するため、カンファレンスはレビュアーにレビューした論文のランキングを付加するように求め始めている。
このランキング情報を使用するための標準的な手順はなく、エリアチェアは異なる方法でそれを使用することができる。
我々は、ランキング情報をスコアに組み込むために、原則化されたアプローチを取る。
論文 参考訳(メタデータ) (2022-04-05T19:39:13Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
ランキングアグリゲーション問題では、各項目を比較する際に、様々な精度レベルが示される。
本稿では,ノイズのあるペアワイズ比較によってアイテムのランクを推定する,除去に基づくアクティブサンプリング戦略を提案する。
提案アルゴリズムは,商品の真のランキングを高い確率で返却できることを示す。
論文 参考訳(メタデータ) (2021-10-08T13:51:55Z) - Leveraging semantically similar queries for ranking via combining
representations [20.79800117378761]
データスカース設定では、特定のクエリで利用可能なラベル付きデータの量は、高度に可変で効率の悪いランキング関数につながる可能性がある。
少量のデータの影響を軽減する一つの方法は、セマンティックに類似したクエリからの情報を活用することである。
我々は,この現象をバイアス分散トレードオフの文脈で記述し,Bingナビゲーショングラフとショウジョウバエ幼虫コネクトームのデータスカース設定に適用する。
論文 参考訳(メタデータ) (2021-06-23T18:36:20Z) - PiRank: Learning To Rank via Differentiable Sorting [85.28916333414145]
ランク付けのための新しい分類可能なサロゲートであるPiRankを提案する。
ピランクは所望の指標をゼロ温度の限界で正確に回収する。
論文 参考訳(メタデータ) (2020-12-12T05:07:36Z) - Analysis of Multivariate Scoring Functions for Automatic Unbiased
Learning to Rank [14.827143632277274]
ユーザのバイアスモデル(すなわち、確率モデル)とアンバイアスなランク付けを共同で学習するAutoULTRアルゴリズムは、性能が優れ、実際のデプロイコストが低いため、多くの注目を集めている。
近年の文脈認識型学習 to ランクモデルの進歩により,複数の文書をまとめて読み上げ,それらのランキングスコアを予測する多変量スコア関数が,人間関連ラベルを用いたランキングタスクにおいて,一変量ランキング関数よりも強力であることが示されている。
2つの大規模ベンチマークデータセットの合成クリック実験により、置換不変な多変量スコアリング機能を持つAutoULTRモデルの性能が著しく向上したことが示された。
論文 参考訳(メタデータ) (2020-08-20T16:31:59Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。