論文の概要: Energy Optimization of Multi-task DNN Inference in MEC-assisted XR Devices: A Lyapunov-Guided Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2501.02572v1
- Date: Sun, 05 Jan 2025 15:07:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:05:49.854198
- Title: Energy Optimization of Multi-task DNN Inference in MEC-assisted XR Devices: A Lyapunov-Guided Reinforcement Learning Approach
- Title(参考訳): MEC支援XRデバイスにおけるマルチタスクDNN推論のエネルギー最適化:リアプノフ誘導強化学習アプローチ
- Authors: Yanzan Sun, Jiacheng Qiu, Guangjin Pan, Shugong Xu, Shunqing Zhang, Xiaoyun Wang, Shuangfeng Han,
- Abstract要約: 仮想と現実世界を融合した拡張現実(XR)は、未来のネットワークの重要な応用である。
我々は、マルチタスク推論のための分散キューモデルを開発し、リソース競合問題とキュー結合の問題に対処した。
我々は、XR機器の消費電力を最小限に抑えるために、リアプノフ誘導近似最適化アルゴリズム(LyaPPO)を考案した。
- 参考スコア(独自算出の注目度): 15.895540097995479
- License:
- Abstract: Extended reality (XR), blending virtual and real worlds, is a key application of future networks. While AI advancements enhance XR capabilities, they also impose significant computational and energy challenges on lightweight XR devices. In this paper, we developed a distributed queue model for multi-task DNN inference, addressing issues of resource competition and queue coupling. In response to the challenges posed by the high energy consumption and limited resources of XR devices, we designed a dual time-scale joint optimization strategy for model partitioning and resource allocation, formulated as a bi-level optimization problem. This strategy aims to minimize the total energy consumption of XR devices while ensuring queue stability and adhering to computational and communication resource constraints. To tackle this problem, we devised a Lyapunov-guided Proximal Policy Optimization algorithm, named LyaPPO. Numerical results demonstrate that the LyaPPO algorithm outperforms the baselines, achieving energy conservation of 24.79% to 46.14% under varying resource capacities. Specifically, the proposed algorithm reduces the energy consumption of XR devices by 24.29% to 56.62% compared to baseline algorithms.
- Abstract(参考訳): 仮想と現実世界を融合した拡張現実(XR)は、未来のネットワークの重要な応用である。
AIの進歩はXR能力を向上する一方で、軽量XRデバイスに計算とエネルギーの重大な課題を課す。
本稿では,マルチタスクDNN推論のための分散キューモデルを開発し,資源競合問題と待ち行列結合の問題に対処する。
XR装置の高エネルギー消費と限られた資源がもたらす課題に対応するため、モデル分割と資源配分のための2つの時間スケール共同最適化戦略を設計し、二段階最適化問題として定式化した。
この戦略は、キューの安定性を確保し、計算および通信資源の制約に固執しつつ、XRデバイスの総エネルギー消費を最小化することを目的としている。
この問題に対処するため,LyaPPOと呼ばれるLyapunov-guided Proximal Policy Optimizationアルゴリズムを考案した。
数値的な結果から、LyaPPOアルゴリズムは、資源容量の異なる24.79%から46.14%のエネルギー保存を達成し、ベースラインよりも優れていることが示されている。
具体的には、提案アルゴリズムは、ベースラインアルゴリズムと比較して、XRデバイスのエネルギー消費量を24.29%減らして56.62%に削減する。
関連論文リスト
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
本稿では,ワイヤレスエッジにおけるエネルギー効率,低レイテンシ,高精度な推論のための新しいアルゴリズムを提案する。
本稿では,新しいデータを一連のデバイスで連続的に生成・収集し,動的キューシステムを通じて処理するシナリオについて考察する。
論文 参考訳(メタデータ) (2023-05-18T12:46:42Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
再構成可能なインテリジェントサーフェス (STAR-RIS) アシストネットワークを同時に送信および反射するカバレッジとキャパシティ最適化のための新しいモデルを提案する。
損失関数ベースの更新戦略はコアポイントであり、各更新時にmin-normソルバによってカバレッジとキャパシティの両方の損失関数の重みを計算することができる。
解析結果から,提案手法は固定重みに基づくMOアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-04-13T13:52:22Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Learning based E2E Energy Efficient in Joint Radio and NFV Resource
Allocation for 5G and Beyond Networks [21.60295771932728]
無線部に電力とスペクトル資源を割り当てる最適化問題を定式化する。
コア部では、すべてのユーザの効率を確保するために、関数の連鎖、配置、スケジューリングを行う。
次に、最大エントロピーフレームワークに基づくソフトアクター・クリティカル・ディープラーニング(SAC-DRL)アルゴリズムを用いて、上記のMDPを解く。
論文 参考訳(メタデータ) (2021-07-13T11:19:48Z) - Energy Efficient Edge Computing: When Lyapunov Meets Distributed
Reinforcement Learning [12.845204986571053]
本研究では,エッジコンピューティングによるエネルギー効率のよいオフロード問題について検討する。
考慮されたシナリオでは、複数のユーザが同時に無線およびエッジコンピューティングリソースを競う。
提案されたソリューションは、ベンチマークアプローチと比較してネットワークのエネルギー効率を高めることもできます。
論文 参考訳(メタデータ) (2021-03-31T11:02:29Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
さらに5Gは、エッジデバイス、エッジサーバ、クラウドの異種機能を活用可能な、エッジクラウドオーケストレーションネットワークである。
マルチユーザ無線ネットワークでは、多様なアプリケーション要件とデバイス間の通信のための様々な無線アクセスモードの可能性により、最適な計算オフロード方式の設計が困難になる。
深層強化学習(Dep Reinforcement Learning, DRL)は、そのような問題に限定的で精度の低いネットワーク情報で対処する新興技術である。
論文 参考訳(メタデータ) (2020-11-17T05:51:03Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。