論文の概要: Evolving Skeletons: Motion Dynamics in Action Recognition
- arxiv url: http://arxiv.org/abs/2501.02593v2
- Date: Sun, 16 Feb 2025 10:11:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:07:12.579282
- Title: Evolving Skeletons: Motion Dynamics in Action Recognition
- Title(参考訳): 進化する骨格:行動認識における運動ダイナミクス
- Authors: Jushang Qiu, Lei Wang,
- Abstract要約: 我々は骨格グラフとハイパーグラフの表現を比較し、動き注入されたポーズに対する静的ポーズを解析する。
本研究は, テイラー変態骨格の強度と限界を強調し, 運動力学の強化の可能性を示した。
本研究は,運動量の多いデータを処理し,行動認識の分野を前進させる,革新的な骨格モデリング技術の必要性を浮き彫りにするものである。
- 参考スコア(独自算出の注目度): 2.290956583394892
- License:
- Abstract: Skeleton-based action recognition has gained significant attention for its ability to efficiently represent spatiotemporal information in a lightweight format. Most existing approaches use graph-based models to process skeleton sequences, where each pose is represented as a skeletal graph structured around human physical connectivity. Among these, the Spatiotemporal Graph Convolutional Network (ST-GCN) has become a widely used framework. Alternatively, hypergraph-based models, such as the Hyperformer, capture higher-order correlations, offering a more expressive representation of complex joint interactions. A recent advancement, termed Taylor Videos, introduces motion-enhanced skeleton sequences by embedding motion concepts, providing a fresh perspective on interpreting human actions in skeleton-based action recognition. In this paper, we conduct a comprehensive evaluation of both traditional skeleton sequences and Taylor-transformed skeletons using ST-GCN and Hyperformer models on the NTU-60 and NTU-120 datasets. We compare skeletal graph and hypergraph representations, analyzing static poses against motion-injected poses. Our findings highlight the strengths and limitations of Taylor-transformed skeletons, demonstrating their potential to enhance motion dynamics while exposing current challenges in fully using their benefits. This study underscores the need for innovative skeletal modelling techniques to effectively handle motion-rich data and advance the field of action recognition.
- Abstract(参考訳): スケルトンをベースとした行動認識は、時空間情報を軽量なフォーマットで効率的に表現する能力において大きな注目を集めている。
既存のほとんどのアプローチでは、スケルトン配列を処理するためにグラフベースのモデルを使用しており、それぞれのポーズは人間の物理的接続を中心に構築された骨格グラフとして表現されている。
これらのうち、時空間グラフ畳み込みネットワーク(ST-GCN)は広く使われているフレームワークとなっている。
あるいは、ハイパーフォーマーのようなハイパーグラフベースのモデルは高次相関を捉え、複雑な関節相互作用のより表現力のある表現を提供する。
最近の進歩であるテイラー・ビデオ(Taylor Videos)は、モーションの概念を埋め込むことで、骨格に基づく行動認識における人間の行動の解釈について、新たな視点を提供する。
本稿では,NTU-60およびNTU-120データセット上でST-GCNとHyperformerモデルを用いて,従来の骨格配列とTaylor変換骨格の両方を包括的に評価する。
我々は骨格グラフとハイパーグラフの表現を比較し、動き注入されたポーズに対する静的ポーズを解析する。
我々の研究は、テイラー変換骨格の強度と限界を強調し、その利点を十分に活用する上での現在の課題を明らかにしながら、運動力学を強化する可能性を実証した。
本研究は、動作豊富なデータを効果的に処理し、行動認識の分野を前進させる革新的な骨格モデリング技術の必要性を浮き彫りにしている。
関連論文リスト
- Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANSは、現在利用可能な最も包括的なモーションキャプチャーHSIデータセットである。
人体全体の動きや部分レベルの物体の動きを複雑に捉えます。
本研究では,任意の長さのHSI配列を効率的に生成する拡散型自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T15:45:04Z) - Dynamic Dense Graph Convolutional Network for Skeleton-based Human
Motion Prediction [14.825185477750479]
本稿では,高密度グラフを構築し,動的メッセージパッシングを実装した動的Dense Graph Convolutional Network (DD-GCN)を提案する。
そこで本研究では,データから動的に学習し,ユニークなメッセージを生成する動的メッセージパッシングフレームワークを提案する。
ベンチマークによるHuman 3.6MとCMU Mocapデータセットの実験は、DD-GCNの有効性を検証する。
論文 参考訳(メタデータ) (2023-11-29T07:25:49Z) - SkeleTR: Towrads Skeleton-based Action Recognition in the Wild [86.03082891242698]
SkeleTRは骨格に基づく行動認識のための新しいフレームワークである。
まず、グラフ畳み込みによる各骨格配列の人体内骨格力学をモデル化する。
次に、スタック化されたTransformerエンコーダを使用して、一般的なシナリオにおけるアクション認識に重要な人物のインタラクションをキャプチャする。
論文 参考訳(メタデータ) (2023-09-20T16:22:33Z) - Overcoming Topology Agnosticism: Enhancing Skeleton-Based Action
Recognition through Redefined Skeletal Topology Awareness [24.83836008577395]
グラフ畳み込みネットワーク(GCN)は長い間、骨格に基づく行動認識の最先端を定義してきた。
彼らはモデルの重みとともに隣接行列を最適化する傾向がある。
このプロセスは、骨接続データの段階的な崩壊を引き起こし、マッピングしようとしたトポロジとは無関係なモデルで終わる。
本稿では,骨の接続性をグラフ距離のパワーを利用して符号化する革新的な経路を提案する。
論文 参考訳(メタデータ) (2023-05-19T06:40:12Z) - Pose-Guided Graph Convolutional Networks for Skeleton-Based Action
Recognition [32.07659338674024]
グラフ畳み込みネットワーク(GCN)は、人体骨格を空間的および時間的グラフとしてモデル化することができる。
本研究では,高性能な人行動認識のためのマルチモーダルフレームワークとして,ポーズ誘導型GCN(PG-GCN)を提案する。
このモジュールの中核となる考え方は、トレーニング可能なグラフを使用して、スケルトンストリームから、ポーズストリームの機能を集約することで、より堅牢な機能表現能力を持つネットワークを実現することだ。
論文 参考訳(メタデータ) (2022-10-10T02:08:49Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
相対的距離と相対的角度情報に基づいて局所的注意マップをグローバルに拡張する適応型空間的注意層を提案する。
我々は,頭部,手,足を結ぶ新しい初期グラフ隣接行列を設計し,行動認識精度の点で目に見える改善点を示す。
提案モデルは,日常生活における人間活動の分野における大規模かつ挑戦的な2つのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2022-07-12T12:22:21Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - Dynamic Hypergraph Convolutional Networks for Skeleton-Based Action
Recognition [22.188135882864287]
骨格に基づく行動認識のための動的ハイパーグラフ畳み込みネットワーク(DHGCN)を提案する。
DHGCNはハイパーグラフを使用して骨格構造を表現し、ヒト関節に含まれる運動情報を効果的に活用する。
論文 参考訳(メタデータ) (2021-12-20T14:46:14Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
骨格に基づく行動分類のための新しい多言語時空間グラフネットワークを提案する。
2つの枝の枝からなるデュアルヘッドグラフネットワークを開発し、少なくとも2つの時間分解能を抽出する。
3つの大規模データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-08-10T09:25:07Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。