Empowering Bengali Education with AI: Solving Bengali Math Word Problems through Transformer Models
- URL: http://arxiv.org/abs/2501.02599v1
- Date: Sun, 05 Jan 2025 16:50:55 GMT
- Title: Empowering Bengali Education with AI: Solving Bengali Math Word Problems through Transformer Models
- Authors: Jalisha Jashim Era, Bidyarthi Paul, Tahmid Sattar Aothoi, Mirazur Rahman Zim, Faisal Muhammad Shah,
- Abstract summary: This paper develops an innovative approach to solving Bengali MWPs using transformer-based models.<n>To support this effort, the "PatiGonit" dataset was introduced, containing 10,000 Bengali math problems.<n>The evaluation revealed that the mT5 model achieved the highest accuracy of 97.30%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mathematical word problems (MWPs) involve the task of converting textual descriptions into mathematical equations. This poses a significant challenge in natural language processing, particularly for low-resource languages such as Bengali. This paper addresses this challenge by developing an innovative approach to solving Bengali MWPs using transformer-based models, including Basic Transformer, mT5, BanglaT5, and mBART50. To support this effort, the "PatiGonit" dataset was introduced, containing 10,000 Bengali math problems, and these models were fine-tuned to translate the word problems into equations accurately. The evaluation revealed that the mT5 model achieved the highest accuracy of 97.30%, demonstrating the effectiveness of transformer models in this domain. This research marks a significant step forward in Bengali natural language processing, offering valuable methodologies and resources for educational AI tools. By improving math education, it also supports the development of advanced problem-solving skills for Bengali-speaking students.
Related papers
- Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning [0.0]
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP)<n>No human-annotated Bengali dataset has previously addressed this task.<n>We created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions.
arXiv Detail & Related papers (2025-05-27T15:47:10Z) - RM-PoT: Reformulating Mathematical Problems and Solving via Program of Thoughts [13.07180561863778]
We propose a three-stage framework that integrates problem reformulation (RM), code-aided reasoning (PoT) and domain-aware few-shot learning.
Our approach first reformulates the input problem into diverse surface forms to reduce structural bias, then retrieves five semantically aligned examples to provide contextual guidance.
arXiv Detail & Related papers (2025-02-18T06:54:32Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
We observe significant performance drops on MATH-P-Hard across various models.
We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills.
arXiv Detail & Related papers (2025-02-10T13:31:46Z) - Qwen2.5-32B: Leveraging Self-Consistent Tool-Integrated Reasoning for Bengali Mathematical Olympiad Problem Solving [0.0]
We present an innovative approach for solving mathematical problems in Bengali, developed for the DL Sprint 3.0 BUET CSE Fest 2024 Competition.
Our method uses advanced deep learning models, notably the Qwen 2.5 series, with improvements made through prompt engineering.
arXiv Detail & Related papers (2024-11-08T19:44:12Z) - Lean Workbook: A large-scale Lean problem set formalized from natural language math problems [50.22847430754973]
Large language models are not good at math theorem proving using formal languages like Lean.
A significant challenge in this area is the scarcity of training data available in these formal languages.
We propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements.
arXiv Detail & Related papers (2024-06-06T08:25:43Z) - How Ready Are Generative Pre-trained Large Language Models for Explaining Bengali Grammatical Errors? [0.4857223913212445]
Grammatical error correction (GEC) tools, powered by advanced generative artificial intelligence (AI), competently correct linguistic inaccuracies in user input.
However, they often fall short in providing essential natural language explanations.
In such languages, grammatical error explanation (GEE) systems should not only correct sentences but also provide explanations for errors.
arXiv Detail & Related papers (2024-05-27T15:56:45Z) - Refining Joint Text and Source Code Embeddings for Retrieval Task with Parameter-Efficient Fine-Tuning [0.0]
We propose a fine-tuning frame-work that leverages.
Efficient Fine-Tuning (PEFT) techniques.
We demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at most.
arXiv Detail & Related papers (2024-05-07T08:50:25Z) - BanglaNLP at BLP-2023 Task 1: Benchmarking different Transformer Models
for Violence Inciting Text Detection in Bengali [0.46040036610482665]
This paper presents the system that we have developed while solving this shared task on violence inciting text detection in Bangla.
We explain both the traditional and the recent approaches that we used to make our models learn.
Our proposed system helps to classify if the given text contains any threat.
arXiv Detail & Related papers (2023-10-16T19:35:04Z) - Textbooks Are All You Need II: phi-1.5 technical report [55.6940110946465]
We create a new 1.3 billion parameter model named textbfphi-1.5 with performance on natural language tasks comparable to models 5x larger.
textbfphi-1.5 exhibits many of the traits of much larger Large Language Models.
We open-source textbfphi-1.5 to promote further research on these urgent topics.
arXiv Detail & Related papers (2023-09-11T14:01:45Z) - Solving Quantitative Reasoning Problems with Language Models [53.53969870599973]
We introduce Minerva, a large language model pretrained on general natural language data and further trained on technical content.
The model achieves state-of-the-art performance on technical benchmarks without the use of external tools.
We also evaluate our model on over two hundred undergraduate-level problems in physics, biology, chemistry, economics, and other sciences.
arXiv Detail & Related papers (2022-06-29T18:54:49Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z) - WARM: A Weakly (+Semi) Supervised Model for Solving Math word Problems [21.501567886241087]
Solving math word problems (MWPs) is an important and challenging problem in natural language processing.
We propose a weakly supervised model for solving MWPs by requiring only the final answer as supervision.
We demonstrate that our approach achieves accuracy gains of 4.5% and 32% over the state-of-the-art weakly supervised approach.
arXiv Detail & Related papers (2021-04-14T09:25:38Z) - mT5: A massively multilingual pre-trained text-to-text transformer [60.0210636815514]
"Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on English-language NLP tasks.
We introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages.
arXiv Detail & Related papers (2020-10-22T17:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.