Qwen2.5-32B: Leveraging Self-Consistent Tool-Integrated Reasoning for Bengali Mathematical Olympiad Problem Solving
- URL: http://arxiv.org/abs/2411.05934v1
- Date: Fri, 08 Nov 2024 19:44:12 GMT
- Title: Qwen2.5-32B: Leveraging Self-Consistent Tool-Integrated Reasoning for Bengali Mathematical Olympiad Problem Solving
- Authors: Saad Tahmid, Sourav Sarker,
- Abstract summary: We present an innovative approach for solving mathematical problems in Bengali, developed for the DL Sprint 3.0 BUET CSE Fest 2024 Competition.
Our method uses advanced deep learning models, notably the Qwen 2.5 series, with improvements made through prompt engineering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an innovative approach for solving mathematical problems in Bengali, developed for the DL Sprint 3.0 BUET CSE Fest 2024 Competition. Our method uses advanced deep learning models, notably the Qwen 2.5 series, with improvements made through prompt engineering, model quantization, and Tool Integrated Reasoning (TIR) to handle complex calculations. Initially, we explored various model architectures, including fine-tuned Mistral and quantized Qwen models, refining them with translation techniques, Retrieval-Augmented Generation (RAG), and custom dataset curation. Manual hyperparameter tuning optimized parameters like temperature and top-p to enhance model adaptability and accuracy. Removal of RAG and parameter adjustments further improved robustness. Our approach highlights the potential of advanced NLP techniques in solving Bengali mathematical problems.
Related papers
- FineGates: LLMs Finetuning with Compression using Stochastic Gates [7.093692674858257]
Large Language Models (LLMs) present significant challenges for full finetuning due to the high computational demands.
Lightweight finetuning techniques have been proposed, like learning low-rank adapter layers.
We propose an adaptor model based on gates that simultaneously sparsify the frozen base model with task-specific adaptation.
arXiv Detail & Related papers (2024-12-17T14:33:05Z) - GenAI4UQ: A Software for Inverse Uncertainty Quantification Using Conditional Generative Models [12.162599515682786]
GenAI4UQ is a software package for inverse uncertainty quantification in model calibration, parameter estimation, and ensemble forecasting.
By replacing computationally intensive iterative processes with a direct, learned mapping, GenAI4UQ enables efficient calibration of model input parameters.
arXiv Detail & Related papers (2024-12-09T22:26:23Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
We propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method.<n>By generating diverse questions from scratch, we produce a dataset of 1 million problem-solution pairs.<n>Our experiments demonstrate that models trained on our data outperform existing open-source datasets.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - Beyond the Kolmogorov Barrier: A Learnable Weighted Hybrid Autoencoder for Model Order Reduction [1.0742675209112622]
We propose a learnable weighted hybrid autoencoder to overcome the Kolmogorov barrier.
We empirically find that our trained model has a sharpness thousands of times smaller compared to other models.
arXiv Detail & Related papers (2024-10-23T00:04:26Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Quantum-Inspired Mean Field Probabilistic Model for Combinatorial Optimization Problems [15.435730759218776]
We develop a novel Quantum-Inspired Mean Field (QIMF) probabilistic model that approximates solutions to Quadratic Unconstrained Binary Optimization problems.
Our empirical studies demonstrate significant improvements in solution evaluation for large-scale problems of portfolio selection, the weighted maxcut problem, and the Ising model.
arXiv Detail & Related papers (2024-06-01T01:53:11Z) - Refining Joint Text and Source Code Embeddings for Retrieval Task with Parameter-Efficient Fine-Tuning [0.0]
We propose a fine-tuning frame-work that leverages.
Efficient Fine-Tuning (PEFT) techniques.
We demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at most.
arXiv Detail & Related papers (2024-05-07T08:50:25Z) - Joint Parameter and Parameterization Inference with Uncertainty Quantification through Differentiable Programming [0.20530463088872453]
We introduce a novel framework for the joint estimation of physical parameters and machine learning parameterizations with uncertainty quantification.
Our framework incorporates online training and efficient Bayesian inference within a high-dimensional parameter space, facilitated by differentiable programming.
arXiv Detail & Related papers (2024-03-04T17:02:23Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Gradient-free quantum optimization on NISQ devices [0.0]
We consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning.
We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters.
arXiv Detail & Related papers (2020-12-23T10:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.