Prune or Retrain: Optimizing the Vocabulary of Multilingual Models for Estonian
- URL: http://arxiv.org/abs/2501.02631v1
- Date: Sun, 05 Jan 2025 19:21:45 GMT
- Title: Prune or Retrain: Optimizing the Vocabulary of Multilingual Models for Estonian
- Authors: Aleksei Dorkin, Taido Purason, Kairit Sirts,
- Abstract summary: modifying the vocabulary of a multilingual encoder model to better suit the Estonian language affects its downstream performance.
We evaluate the effectiveness of two vocabulary adaptation approaches -- retraining the tokenizer and pruning unused tokens.
- Score: 0.19116784879310028
- License:
- Abstract: Adapting multilingual language models to specific languages can enhance both their efficiency and performance. In this study, we explore how modifying the vocabulary of a multilingual encoder model to better suit the Estonian language affects its downstream performance on the Named Entity Recognition (NER) task. The motivations for adjusting the vocabulary are twofold: practical benefits affecting the computational cost, such as reducing the input sequence length and the model size, and performance enhancements by tailoring the vocabulary to the particular language. We evaluate the effectiveness of two vocabulary adaptation approaches -- retraining the tokenizer and pruning unused tokens -- and assess their impact on the model's performance, particularly after continual training. While retraining the tokenizer degraded the performance of the NER task, suggesting that longer embedding tuning might be needed, we observed no negative effects on pruning.
Related papers
- Enhancing Idiomatic Representation in Multiple Languages via an Adaptive Contrastive Triplet Loss [9.807885676930308]
We propose an approach to model idiomaticity using a triplet loss that incorporates the asymmetric contribution of components words to an idiomatic meaning for training language models.
Our proposed method is evaluated on a SemEval challenge and outperforms previous alternatives significantly in many metrics.
arXiv Detail & Related papers (2024-06-21T14:21:41Z) - No Train but Gain: Language Arithmetic for training-free Language Adapters enhancement [59.37775534633868]
We introduce a novel method called language arithmetic, which enables training-free post-processing.
The effectiveness of the proposed solution is demonstrated on three downstream tasks in a MAD-X-based set of cross-lingual schemes.
arXiv Detail & Related papers (2024-04-24T08:52:40Z) - Impact of Tokenization on LLaMa Russian Adaptation [0.0]
We investigate the possibility of addressing the issue with vocabulary substitution in the context of LLaMa Russian language adaptation.
The results of automatic evaluation show that vocabulary substitution improves the model's quality in Russian.
Additional human evaluation of the instruction-tuned models demonstrates that models with Russian-adapted vocabulary generate answers with higher user preference.
arXiv Detail & Related papers (2023-12-05T09:16:03Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
We study the interaction between parameter-efficient fine-tuning (PEFT) and cross-lingual tasks in multilingual autoregressive models.
We show that prompt tuning is more effective in enhancing the performance of low-resource languages than fine-tuning.
arXiv Detail & Related papers (2023-11-14T00:43:33Z) - Improving Korean NLP Tasks with Linguistically Informed Subword
Tokenization and Sub-character Decomposition [6.767341847275751]
We introduce a morpheme-aware subword tokenization method that utilizes sub-character decomposition to address the challenges of applying Byte Pair.
Our approach balances linguistic accuracy with computational efficiency in Pre-trained Language Models (PLMs)
Our evaluations show that this technique achieves good performances overall, notably improving results in the syntactic task of NIKL-CoLA.
arXiv Detail & Related papers (2023-11-07T12:08:21Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
We propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers.
Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks.
arXiv Detail & Related papers (2023-05-26T18:06:49Z) - How Robust is Neural Machine Translation to Language Imbalance in
Multilingual Tokenizer Training? [86.48323488619629]
We analyze how translation performance changes as the data ratios among languages vary in the tokenizer training corpus.
We find that while relatively better performance is often observed when languages are more equally sampled, the downstream performance is more robust to language imbalance than we usually expected.
arXiv Detail & Related papers (2022-04-29T17:50:36Z) - A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task
Learning [8.052271364177988]
Subword tokenization is a commonly used input pre-processing step in most recent NLP models.
We propose a vocabulary-free neural tokenizer by distilling segmentation information from subword tokenization.
Our tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks.
arXiv Detail & Related papers (2022-04-22T16:50:49Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
Fine-tuning pre-trained language models to downstream cross-lingual tasks has shown promising results.
We leverage continual learning to preserve the cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks.
Our methods achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
arXiv Detail & Related papers (2020-04-29T14:07:18Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.