論文の概要: OpenGU: A Comprehensive Benchmark for Graph Unlearning
- arxiv url: http://arxiv.org/abs/2501.02728v1
- Date: Mon, 06 Jan 2025 02:57:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:41.117169
- Title: OpenGU: A Comprehensive Benchmark for Graph Unlearning
- Title(参考訳): OpenGU: グラフアンラーニングのための総合ベンチマーク
- Authors: Bowen Fan, Yuming Ai, Xunkai Li, Zhilin Guo, Rong-Hua Li, Guoren Wang,
- Abstract要約: Graph Unlearning(GU)は、プライバシに敏感なアプリケーションにとって重要なソリューションとして登場した。
最初のGUベンチマークであるOpenGUでは、16のSOTA GUアルゴリズムと37のマルチドメインデータセットが統合されている。
既存のGUメソッドに関する決定的な結論は8ドルもしますが、その一方で、その制限について貴重な洞察を得ています。
- 参考スコア(独自算出の注目度): 24.605943688948038
- License:
- Abstract: Graph Machine Learning is essential for understanding and analyzing relational data. However, privacy-sensitive applications demand the ability to efficiently remove sensitive information from trained graph neural networks (GNNs), avoiding the unnecessary time and space overhead caused by retraining models from scratch. To address this issue, Graph Unlearning (GU) has emerged as a critical solution, with the potential to support dynamic graph updates in data management systems and enable scalable unlearning in distributed data systems while ensuring privacy compliance. Unlike machine unlearning in computer vision or other fields, GU faces unique difficulties due to the non-Euclidean nature of graph data and the recursive message-passing mechanism of GNNs. Additionally, the diversity of downstream tasks and the complexity of unlearning requests further amplify these challenges. Despite the proliferation of diverse GU strategies, the absence of a benchmark providing fair comparisons for GU, and the limited flexibility in combining downstream tasks and unlearning requests, have yielded inconsistencies in evaluations, hindering the development of this domain. To fill this gap, we present OpenGU, the first GU benchmark, where 16 SOTA GU algorithms and 37 multi-domain datasets are integrated, enabling various downstream tasks with 13 GNN backbones when responding to flexible unlearning requests. Based on this unified benchmark framework, we are able to provide a comprehensive and fair evaluation for GU. Through extensive experimentation, we have drawn $8$ crucial conclusions about existing GU methods, while also gaining valuable insights into their limitations, shedding light on potential avenues for future research.
- Abstract(参考訳): グラフ機械学習は関係データの理解と分析に不可欠である。
しかしながら、プライバシに敏感なアプリケーションは、トレーニングされたグラフニューラルネットワーク(GNN)からセンシティブな情報を効率的に取り除く機能を必要としており、モデルの再トレーニングによる不要な時間と空間オーバーヘッドをゼロから回避している。
この問題に対処するため、グラフアンラーニング(GU)は、データ管理システムにおける動的なグラフ更新をサポートし、分散データシステムにおけるスケーラブルなアンラーニングを可能にすると同時に、プライバシコンプライアンスの確保という、重要なソリューションとして登場した。
コンピュータビジョンや他の分野の機械学習とは異なり、GUはグラフデータの非ユークリッド的な性質と、GNNの再帰的なメッセージパッシング機構により、独特な困難に直面している。
さらに、下流タスクの多様性と未学習要求の複雑さは、これらの課題をさらに増幅します。
多様なGU戦略の普及にもかかわらず、GUの公正な比較を提供するベンチマークの欠如、下流タスクと未学習要求を組み合わせる際の柔軟性の制限は、評価の不整合をもたらし、この領域の開発を妨げている。
このギャップを埋めるために、最初のGUベンチマークであるOpenGUを紹介します。16のSOTA GUアルゴリズムと37のマルチドメインデータセットが統合され、フレキシブルな未学習要求に対応すると、13のGNNバックボーンを持つさまざまなダウンストリームタスクを可能にします。
この統合ベンチマークフレームワークに基づいて、GUの総合的かつ公正な評価を提供することができる。
広範な実験を通じて、既存のGU手法について8ドルの決定的な結論を導きました。
関連論文リスト
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - xAI-Drop: Don't Use What You Cannot Explain [23.33477769275026]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための主要なパラダイムとして登場した。
GNNは、一般化の欠如や解釈可能性の低下といった課題に直面している。
トポロジカルレベル降下正則化器であるxAI-Dropを導入する。
論文 参考訳(メタデータ) (2024-07-29T14:53:45Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained
Heterogeneous Graph Neural Networks [24.435068514392487]
HetGPTは、グラフニューラルネットワークのトレーニング後プロンプトフレームワークである。
半教師付きノード分類における最先端HGNNの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-23T19:35:57Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Certified Graph Unlearning [39.29148804411811]
グラフ構造化データは実際にユビキタスであり、しばしばグラフニューラルネットワーク(GNN)を使用して処理される
我々は,GNNのemph認定グラフアンラーニングのための最初のフレームワークを紹介する。
ノード機能、エッジ、ノードアンラーニングの3つの異なるタイプのアンラーニング要求を検討する必要がある。
論文 参考訳(メタデータ) (2022-06-18T07:41:10Z) - Graph Neural Networks: Methods, Applications, and Opportunities [1.2183405753834562]
本稿では,各学習環境におけるグラフニューラルネットワーク(GNN)の包括的調査について報告する。
各学習課題に対するアプローチは、理論的および経験的視点の両方から分析される。
さまざまなアプリケーションやベンチマークデータセットも提供されており、GNNの一般適用性に疑問が残るオープンな課題もある。
論文 参考訳(メタデータ) (2021-08-24T13:46:19Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。